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SUMMARY

STAT6 plays a prominent role in adaptive immunity
by transducing signals from extracellular cytokines.
We now show that STAT6 is required for innate
immune signaling in response to virus infection.
Viruses or cytoplasmic nucleic acids trigger STING
(also named MITA/ERIS) to recruit STAT6 to the
endoplasmic reticulum, leading to STAT6 phosphor-
ylation on Ser407 by TBK1 and Tyr641, independent of
JAKs. Phosphorylated STAT6 then dimerizes and
translocates to the nucleus to induce specific target
genes responsible for immune cell homing. Virus-
induced STAT6 activation is detected in all cell-types
tested, in contrast to the cell-type specific role of
STAT6 in cytokine signaling, and Stat6–/– mice are
susceptible to virus infection. Thus, STAT6 mediates
immune signaling in response to both cytokines at
the plasma membrane, and virus infection at the
endoplasmic reticulum.
INTRODUCTION

Innate immunity is the first line of defense against microbial

infection. Recognition of pathogens is mainly mediated by

pattern recognition receptors (PRRs), including Toll-like recep-

tors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors

(NLRs) (Takeuchi and Akira, 2010), that trigger signal cascades

to upregulate the expression of various cytokines. In the case

of viral infection, endosomal TLRs and cytoplasmic RLRs detect

viral DNAs or RNAs and induce the production of type I IFN,

which are potent inhibitors of viral replication (Gitlin et al., 2006;

Kato et al., 2005, 2006). RLRs, including RIG-I and Mda5, are

sensors of viral RNAs in the cytoplasm; in response to viral infec-

tion, RLRs associate with the adaptor protein MAVS/Cardif/

IPS-1/VISA (Kawai et al., 2005; Meylan et al., 2005; Seth et al.,

2005; Xu et al., 2005), an integral membrane protein that func-
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tions on both mitochondria and peroxisomes through distinct

mechanisms (Dixit et al., 2010); the RLR/MAVS complex facili-

tates TBK1/IKKε-mediated activation of IRF3/7 and NF-kB,

which lead to the induction of type I IFNs. Besides viral RNA,

cytoplasmic double-stranded DNA (dsDNA) also induces type I

IFNs, but the exact identity of the receptor in this situation is

currently not fully established (Ishii et al., 2006; Stetson and

Medzhitov, 2006). A recently identified adaptor protein, endo-

plasmic reticulum IFN stimulator (STING, also named MITA/

ERIS) (Ishikawa and Barber, 2008; Sun et al., 2009; Zhong

et al., 2008) exhibits a vital role in dsDNA signaling (Ishikawa

et al., 2009). TheDNA sensors induce type I IFN production either

through STING (IFI16 [Unterholzner et al., 2010]) or via the RIG-I–

MAVS axis (involving RNA polymerase III mediated transcription

of cytoplasmic DNA [Ablasser et al., 2009; Chiu et al., 2009]),

and both pathways ultimately result in the recruitment and acti-

vation of TBK1, which in turn activates IRF3/7 and NF-kB.

Many cytokines, including type I IFNs, exert their effects

through the canonical JAK (Janus kinase)-STAT (signal trans-

ducers and activators of transcription) pathway (Levy and Dar-

nell, 2002). Specifically, IL-4 and IL-13 activate STAT6 (Takeda

et al., 1996) resulting in T helper cells 2 (Th2) polarization (Aki-

moto et al., 1998; Hebenstreit et al., 2006; Shimoda et al.,

1996). IL-4 induces the phosphorylation of IL-4 receptor, which

in turn recruits cytosolic STAT6 by its SH2 domain; the recruited

STAT6 is phosphorylated on tyrosine 641 (Y641) by JAK1, which

results in the dimerization and nuclear translocation of STAT6

to activate target genes (Mikita et al., 1996, 1998). Several cyto-

kines, including IL-3/15, IFN-a and platelet-derived growth

factor (PDGF-BB), activate STAT6 in different cell types (Bula-

nova et al., 2003; Masuda et al., 2000; Quelle et al., 1995), and

induce over 150 diverse targets, many of which are involved in

Th2-associated processes (Elo et al., 2010; Wei et al., 2010). A

thorough understanding of biological consequences of STAT6

signaling awaits additional studies.

It is known that NF-kB, AP-1 and IRFs are responsible for the

induction of many IFN-stimulated genes (ISGs), however, the

role of STAT6 in anti-viral response is unclear. Here we report

a STAT6-dependent antiviral innate immune signaling event
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Figure 1. Virus-Induced STAT6-STING Interaction

and STAT6 Translocation

(A) STAT6 translocates and colocalizes with STING after

virus infection. Confocal microscopy of endogenous

STING (red), STAT6 (green) and the merge in HeLa cells

infected with Sendai virus (SeV) for the indicated hours.

Nuclei were stained with DAPI. All images are represen-

tative of at least three independent experiments in which

>95% of the cells displayed similar staining. Scale bars

represent 10 mm.

(B) STAT6 interacts with STING and TBK1 after virus

infection. Primary MEFs, 2fTGH and THP-1 cells were in-

fected with SeV for the indicated hours. Cell lysates were

immunoprecipitated (IP) with a-STING and blotted (IB) with

STAT6, TBK1 and MAVS antibodies. WCL, whole cell

lysates.

(C and D) Virus infection induces STAT6 translocation.

Western blot analyses of fractionated HeLa cells infected

with Herpes simplex virus 1 (HSV-1) (C) or SeV (D) for the

indicated hours. Cyt, cytosolic; ER, endoplasmic retic-

ulum-rich; Nuc, nuclear; and Mit, mitochondrial; were re-

vealed by Caspase 3, Calnexin, Histone H3, and COX IV,

respectively.

See also Figure S1.
that leads to the induction of chemokines, including CCL2,

CCL20, and CCL26, and these chemokines recruit immune cells

to combat viral infection. More importantly, virus induces STAT6

activation independently of JAK, but instead relies on STING and

TBK1, as well as MAVS in the case of RNA virus. The physiolog-

ical significance of the novel pathway is reflected by a higher

susceptibility of Stat6–/–mice to viral infections; moreover, unlike

other cell type-specific STAT6 signaling pathways, virus-

induced STAT6 activation is ubiquitously detected, implying

a fundamental requirement of this mechanism in the defense

against viral infections.

RESULTS

STAT6 Interacts with STING in Response to Virus
Infection
Using C-terminal STING (aa 178–379) as bait in the yeast 2-

hybrid screen, we identified an STING-STAT6 interaction and

confirmed it in 293 cells by coimmunoprecipitation (coIP) (Fig-

ure S1A available online). Specifically, the DNA-binding domain

(DBD) of STAT6 and STING C terminus (aa 317–379) were

required for this interaction (Figures S1B–S1D). We next exam-

ined this interaction at endogenous protein levels. Analysis

with confocal microscope showed a dispersed pattern of

STAT6 in the cytosol of unstimulated HeLa cells; upon infection

with Sendai virus (SeV, an RNA virus), STAT6 redistributes to the

perinuclear regions, colocalizes with STING, and eventually

translocates into the nucleus (Figure 1A). CoIP analyses also re-

vealed an inducible interaction of endogenous STAT6 with

STING, as well as MAVS and TBK1, in SeV-infected primary

MEFs, 2fTGH and THP-1 cells (Figure 1B). Consistent with these

observations, endogenous STAT6 co-fractionate with STING in

HeLa cell lysates after Herpes simplex virus 1 (HSV-1, a DNA

virus) infection (Figure 1C). Similar results were obtained from

SeV-infected HeLa cells, with an additional location to a mixed
fraction containing MAVS-resident mitochondria-associated

ER membrane (MAM) and also MAVS-resident peroxisomal

membrane (Dixit et al., 2010; Ishikawa et al., 2009; Zhong

et al., 2008) (Figure 1D). These data demonstrate that STAT6

interacts with STING during virus infection.

STAT6 Is Activated upon Virus Infection
293 cells lack a functional endogenous STAT6 but express the

other components of the IL-4 signaling pathway (Mikita et al.,

1996, 1998). Taking advantage of this property, we first estab-

lished a 293 cell-line stably expressing Flag-STAT6 (293-

STAT6) and confirmed its normal responsiveness to IL-4/13

with intact Y641 phosphorylation (data not shown). Virus infection

resulted in the nuclear translocation of STAT6, suggesting

that STAT6 may serve as a transcriptional activator under this

situation. To confirm this hypothesis, we assessed Y641 phos-

phorylation of STAT6, since it is required for STAT6 activation

in response to cytokines. We found that STAT6 was indeed

phosphorylated on Y641 in SeV-infected and poly (I:C)/poly

dAdT-transfected cells, and this STAT6 phosphorylation takes

place prior to the phosphorylation of IRF3 and other STATs

(Figures 2A, 2D, and 2H, and Figures S2B and S2H). A STAT6-

responsive luciferase reporter (E3-Luc) (Yuan et al., 2006) was

activated in 293-STAT6 cells upon virus infection and poly

(I:C)/poly dAdT transfection, whereas a nonresponsive control

reporter (mutated at the STAT6-binding site, E3-Luc-M) was

not affected (Figure 2C and Figure S2A). By contrast, neither

reporter was activated in 293 cells, indicating a transactivation

function of STAT6 in response to virus. These findings imply

a previously unknown pathway of STAT6 activation in response

to viral infection and cytoplasmic dsRNA/DNA.

STAT6 can be activated by several cytokines. To clarify

a potential role of cytokines in STAT6 activation during viral chal-

lenges, we first monitored cytokine production in virus-infected

cells. Neither IL-4 nor IL-13 was induced by virus (Figure 2B
Cell 147, 436–446, October 14, 2011 ª2011 Elsevier Inc. 437



A

B

C

D G

H

E

F I

Figure 2. Virus-Induced STAT6 Activation

(A) SeV induces STAT6 phosphorylation. 293-STAT6 cells were infected with SeV for the indicated hours. Phosphorylation of the indicated proteins was analyzed

by western blot. (Top panel: membrane was probed with a-P-STAT6, developed, and reprobed with a-P-IRF3.)

(B) Kinetics of cytokine induction by virus. Supernatants of cells in (A) and prolonged infected-cells as indicated were subject to ELISA or type I IFN bioassay.

Asterisk indicates levels that were not detectable.

(C) Virus infection activates STAT6. 293-STAT6 cells transfected with an E3-Luc (STAT6-responsive reporter) or E3-Luc-M (STAT6-nonresponsive reporter) were

treatedwith IL-4 for 12 hr, transfectedwith poly (I:C) (pIC)/poly dAdT (pdAdT) or infectedwith SeV/HSV-1 for 24 hr. STAT6 activationwas analyzed using luciferase

assay (fold induction).

(D) Virus-induced STAT6 activation is independent of cytokines in culture media. Naive 293-STAT6 cells were incubated with supernatants from SeV-infected

293-STAT6 cells for indicated times. Both infected (upper panels) and media-treated cells (lower panels) were analyzed for phosphorylation of the indicated

proteins by western blot. Lysate from IL-4 treated cells was used as a positive control for STAT6 phosphorylation detection.

(E) Virus-induced STAT6 phosphorylation does not require protein synthesis. Mock or cycloheximide (CHX, 5 mg/ml) pretreated (for 2 hr) 293-STAT6 cells were

infected with SeV or transfected with poly (I:C) for 10 hr. STAT6 phosphorylation was analyzed by western blot.

(F) Left, ELISA analyses of IL-8 production in supernatants of cells treated in (E) for 24 hr. Right, IFN-b-Luc reporter assay for the induction of IFN-b in the same

cells.

(G) JAK1 and IFNAR2 are not required for STAT6 activation by virus. U4A (JAK1–/–) and U5A (IFNAR2–/–) cells transfected with an E3-Luc were treated with IL-13

for 12 hr or transfected with poly (I:C) for 24 hr. STAT6 activation was analyzed using luciferase assay (fold induction).

(H) JAK1 and IFNAR2 are not required for STAT6 phosphorylation by virus. 2fTGH, U4A and U5A cells were infected with SeV for the indicated hours.

Phosphorylation of the indicated proteins was analyzed by western blot. IFNs, 2 hr of type I IFNs (500 unit/ml IFN-a & 500 unit/ml IFN-b) treatment.

(I) Y641 phosphorylation is a prerequisite for STAT6 activation. 293 cells transfected with an E3-Luc and wild-type (WT) or mutant STAT6 were infected with SeV,

transfected with poly (I:C) for 24 hr or treated with IL-4 for 12 hr. Luciferase activity was analyzed as fold induction (upper panel). Vec, empty vector; F641Y, the

reversed Y641F. Expression of STAT6 was analyzed by western blot (lower panel).

Data are means ± SEM. See also Figure S2.
and Figure S2C), thus excluding their involvement in STAT6 acti-

vation after virus infection. Strikingly, other cytokines including

type I IFNs, IL-8 and STAT6-induced genes (CCL2 and CCL20,

see below), displayed similar kinetics post infection. Therefore,

CCL2/20 is unlikely regulated by cytokines like type I IFNs or

IL-8. In fact, when media of SeV-infected 293-STAT6 cells

were used to treat naive 293-STAT6 cells, STAT6 phosphoryla-

tion was only detected in virus-infected but not media-treated

cells, whereas phosphorylation of STAT1/2/3/5 was detected

in media-treated cells (Figure 2D and data not shown), excluding

any STAT6-activating cytokines in the media within these time
438 Cell 147, 436–446, October 14, 2011 ª2011 Elsevier Inc.
points. Furthermore, STAT6 phosphorylation was intact upon

SeV and poly (I:C) stimulation when production of cytokines

including IL-8 and type I IFNs was inhibited by cycloheximide

(CHX) pretreatment (Figures 2E and 2F). These data collectively

indicate a cytokine –independent pathway of STAT6 activation

upon virus infection.

Next we used 2fTGH and its derivative cell lines (Kumar et al.,

1997) (each deficiency in a single key component of the JAK–

STAT pathway, Figure S2D) to test if any of these known proteins

in JAK-STAT pathway would be required for virus-induced

STAT6 activation. Notably, U4A cells with JAK1 deficiency did
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Figure 3. Virus-Activated STAT6 Regulates

Specific Target Genes

(A) Microarray analysis of poly (I:C)-induced genes.

Expression levels in 293 cells were arbitrarily set to 1

(green). Heat map of genes most strongly upregulated by

poly (I:C) in both cells (top) and only in 293-STAT6 cells

(bottom). Stars indicate genes confirmed by quantitative–

PCR, western blot and/or ELISA.

(B) Quantitative–PCR analyses of U4A and U5A cells

transfected with poly (I:C) or treated with IL-4 for the indi-

cated hours. Data were normalized to the relative expres-

sion of the HPRT1 reference gene.

(C) CCL2 and CCL20 are upregulated in the absence of

JAK1 or IFNAR2. ELISA analyses of 2fTGH (2f), U4A and

U5A cells transfected with poly (I:C) (Trans pIC), treated

with poly (I:C) (Add pIC) or infected with SeV for 24 hr.

(D) CCL2 promoter contains a functional STAT6 site that is

responsive to virus infection. A schematic presentation of

STAT6 binding site mutants is shown (upper). 293-STAT6

cells transfected with the indicated promoter-reporters

were infected with SeV or HSV-1. Luciferase activity was

analyzed as fold induction.

Data are means ± SEM. See also Figure S3.
not respond to IL-4/13 (Figure 2G and Figures S2D–S2G), while

U5A cells deficient in IFNAR2 were completely defective in IFN-

a/b response (Figure S2F). Surprisingly, STAT6 from all these

cells responded normally to virus infection (Figures 2G and 2H

and Figure S2G), indicating that none of these components alone

is indispensable. Besides, cytokine effects were re-examined

using these cells. Treatment with a high concentration of IFNs

and other STAT6-responding cytokines including IL-3/15 and

PDGF-BB did not result in STAT6 phosphorylation in 2fTGH or

U5A cells (Figure 2H, Figure S2F, and data not shown), support-

ing our previous conclusion that virus-induced STAT6 activation

is cytokine-independent.

Although virus-induced STAT6 activation appears to be quite

different from that induced by IL-4/13, Y641 phosphorylation is

essential for both activation pathways since mutation of this

residue totally abolished its response to virus or IL-4/13 (Fig-

ure 2I). The SH2 domain of STATs is essential not only for both

receptor-binding and dimerization, but is also required for DNA

binding by this family of proteins. To investigate the role of

SH2 domain in virus-induced STAT6 activation, we searched

for potential residue(s) in this domain that might be important.

We found that L551A mutant lost the ability to respond to virus,

albeit with normal response to IL-4/13, and the defect was fully

rescued by the reversion mutation (Figures S2I–S2L). Further

experiments showed that the L551A mutation abrogated Y641

phosphorylation and STAT6 homo-dimerization in response to

virus; by contrast, themutation has no effect on STAT6 activation

by IL-4 (Figures S2M-S2O). Collectively these data suggest that

STAT6 is differentially activated by virus and IL-4/13.
Cell 147, 43
Virus-Activated STAT6 Regulates
a Specific Set of Target Genes
Using DNA microarrays, we compared mRNAs

that are significantly induced in mock or poly

(I:C) transfected 293 and 293-STAT6 cells.

Among 30, 968 genes examined, poly (I:C) trans-
fection induced the expression of numerous ISGs in both cells,

including OAS1, CCL5 and IFIT1/3, and a set of genes only in

293-STAT6 cells (Figure 3A), suggesting that these genes

are specifically regulated by STAT6; notably among the

STAT6-regulated genes are the chemokines CCL2, CCL20,

andCCL26, which are responsible for the recruitment of immune

cells to sites of infection. The microarray data were validated

by either quantitative–PCR or ELISA (Figures 3B and 3C and

Figure S3), respectively.

The transcriptome of poly (I:C) stimulated 293-STAT6 cells

displayed substantial difference from that of IL-4/13 activated

cells. In fact, while CCL11 was only upregulated by IL-4 treat-

ment, CCL26 could be induced by both IL-4 and virus. Consis-

tently, both SeV and poly (I:C) were able to induce CCL2 and

CCL20 in U4A and U5A cells (Figures 3B and 3C). Furthermore,

inspection ofCCL2 promoter sequence revealed one typical and

two putative STAT6 binding sites (–1129 to –1120, –585 to –576,

and –293 to –285 relative to the transcriptional start site, respec-

tively). SeV and HSV-1 infection indeed activated a luciferase

reporter driven by DNA segment containing these sites, but not

the one with mutation in the first STAT6 binding site (Figure 3D),

suggesting that CCL2 promoter harbors a functional STAT6

binding site that is responsive to virus infection.

STING Mediates STAT6 Activation by Virus
Next, we sought to investigate the molecular mechanism of

STAT6 signaling in response to virus. The translocation and

interaction of STAT6 with STING after virus infection (Figure 1)

raised the possibility that STING is involved in STAT6 activation.
6–446, October 14, 2011 ª2011 Elsevier Inc. 439



A B

C

Cyt
0 7

WT Sting-/-

SeV
STAT6

Caspase3
Histone H3

14
Nuc

0 7 14
Cyt

0 7 14
Nuc

0 7 14 (h)

IL
-4SeV

0 12 16 12 16
HSV

D

ST
A

T6Dimer

Dimer

Monomer

Monomer

IR
F3

P-STAT6
STAT6

Sting-/-

SeV
0 10 12 IL

-4

1012
HSV HSV SeV

0 10 12 IL
-4

1012

Sting-/--STING

STAT6

IF
N

α
/β

(U
/m

l)
IL

-6
 (p

g/
m

l)
C

C
L2

0 
(p

g/
m

l)

0

600

1200

C
C

L2
 (p

g/
m

l)

0

500

1000

C
on

Se
V

V
SV

H
SV

-1
p 

IC
pd

A
dT

C
T 

gD
N

A
LM

  D
N

A
E.

co
li

D
N

A

WT
Sting-/-

Sting -/-+STING

0

45

90

0

350

700

IL
-4SeV

0 12 16 12 16
HSV

Sting-/--STING Sting-/-

Figure 4. STING Is Required for Virus-Induced

STAT6 Activation

(A) ELISA analyses of cytokine production and type I IFN

bioassay in WT, Sting–/– and Sting–/–-hSTING MEFs

(STING–/–MEFs reconstituted with human STING) infected

with virus or transfectedwith poly (I:C)/poly dAdT/genomic

DNA from Calf thymus (CT gDNA)/Listeria Monocytogenes

(LM DNA)/E. coli.

(B) Western blot analyses of fractionated WT and Sting–/–

MEFs infected with SeV for the indicated hours. Cyt,

cytosol; Nuc, nucleus.

(C) Sting–/– and Sting–/–-hSTING MEFs expressing human

STAT6 were infected with the indicated viruses or treated

with IL-4. STAT6 phosphorylation was analyzed by

western blot.

(D) Cells in (C) were analyzed by native-PAGE and western

blot for dimerization of STAT6 and IRF3.

Data are means ± SEM. See also Figure S4.
To address this possibility, we first assessed the effect of RNAi

knockdown of STING. Suppression of STING expression almost

completely abolished STAT6 activation in response to SeV

infection, but had little effects on IL-4 treatment (Figures S4A–

S4C). Meanwhile, the induced interaction between MAVS and

STAT6 (Figure S4D) and translocation of STAT6 from cytosol to

ER fraction and later to nucleus was barely detectable (Fig-

ure S4E). Further evidence for a critical role of STING in virus-

derived STAT6 activation showed that Sting–/– MEFs lost

CCL2/20 induction in response to virus and transfected genomic

DNA, although comparable amounts of IL-6 and type I IFNs

were detected in response to SeV, VSV, and poly (I:C) (Figure 4A).

This result also demonstrated that STING is dispensable for

RLR-mediated type I IFN production. As a control, WT and

STING-reconstituted Sting�/� MEFs showed normal response,

highlighting the vital role of STING in virus-induced STAT6

activation. STAT6 from Sting�/� MEFs retained in the cytosol

after virus infection (Figure 4B). Exogenous human STAT6

(hSTAT6) was not phosphorylated on Y641 (Figure 4C), nor did

it dimerize (Figure 4D) in Sting�/� MEFs after virus infection.

These data as a whole indicated that STING is required for

virus-induced STAT6 activation.

MAVS Is Required for STAT6 Activation by RNA Virus
Since STAT6 was also localized to MAVS-resident MAM and

peroxisomes (Figure 1D), we speculated that MAVS might take

a part in STAT6 signaling after virus infection. Indeed, MAVS,

RIG-I–N, and Mda5-N (where N denotes N-terminal CARD

module) strongly activated STAT6 (Figure S5A), consistent with

a role for STAT6 in RNA virus infection. Yeast 2-hybrid assays

showed that STAT6 interacted only with STING but not with

MAVS or TBK1, each of which could bind STING (Figure S5B).

This result suggested that STING may act as a platform that

assembles the STAT6 signal complex which includes MAVS in

the case of RNA virus stimulation.
440 Cell 147, 436–446, October 14, 2011 ª2011 Elsevier Inc.
To verify this point, we examined virus-

induced cytokine production in cells derived

from Mavs�/� mice. SeV could only induce

CCL2/20 secretion in bone marrow-derived
macrophages (BMDMs) from WT, but not Mavs�/� mice; on

the contrary, Mavs�/� cells responded normally to HSV-1 (Fig-

ures 5A and Figure S5C). Similarly, CCL2/20 production was

severely diminished in sera or in organs (lungs and livers) of

Mavs�/� mice intravenously infected with SeV compared to

their heterozygous littermates (Figure 5B). SeV infection, but

not HSV-1 infection, resulted in more severe lung pathology,

with massive infiltration of monocytes, in WT relative toMavs�/�

mice (Figure 5C). In addition, SeV-induced STAT6 nucleus trans-

location was completely abolished in Mavs�/� cells (data not

shown). The requirement for MAVS in STAT6 signaling was

confirmed by that virus-induced CCL2/20 production was fully

restored in human MAVS-reconstituted Mavs�/� MEFs (Fig-

ure 5D). These data demonstrate that MAVS is required for

RNA virus-induced STAT6 activation.

Wealso investigated the role of STINGandMAVS in the canon-

ical STAT6 pathway, and we observed normal CCL11 induction

in relevant knockout MEFs in response to IL-4 except Stat6�/�

MEFs (Figure 5E), suggesting that the canonical STAT6 signaling

pathway is intact and is independent of STING or MAVS.

TBK1 Is Required for STAT6 Phosphorylation
Our previous results suggest that individual JAK deficiency has

little effect on virus-triggered STAT6 phosphorylation, but it

remains to be tested whether simultaneous lack of two or more

JAKs would inhibit the process. Using Jak inhibitor Ruxolitinib

(INCB 018424) and CP690550, which show specific inhibition

of JAK1/2 and JAK3/JAK2, respectively, we found that the inhib-

itors had little impact on virus-induced STAT6 phosphorylation

in U1A cells that is deficient of Tyk2 protein (Figure 6A). Consis-

tently, none of the JAKs was phosphorylated in virus-infected

U5A cells while STAT6 phosphorylation persisted (Figure 6B),

implying a JAK-independent phosphorylation of STAT6. Interest-

ingly, TBK1, IKKε, and IKKb overexpression led to obvious shift

in the mobility of STAT6 on SDS-PAGE (Figure 6C), whereas
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Figure 5. MAVS Is Required for RNA Virus-Induced

STAT6 Activation

(A and B) Mavs-deficiency impaired STAT6-regulated

cytokine production in response to RNA virus. Cytokine

production in bone-marrow-derived macrophages

(BMDMs) (A) or organs (B) from�7-week- oldMavs+/– and

Mavs–/– mice (n = 3) infected with the indicated viruses for

24 hr (A) or 48 hr (B).

(C) Impaired pathology ofMavs–/– mice in response to RNA

virus. Lung sections were made from mice in (B) and

stained with hematoxylin-eosin, examined by light mi-

croscopy for histologic changes.

(D) Cytokine production in WT, Mavs–/– and Mavs–/–-Flag-

hMAVS MEFs infected with the indicated viruses for 24 hr

(top). Expression of MAVS was analyzed by western blot

with a-Flag (bottom).

(E) TBK1, MAVS, and STING are not required for classical

IL-4/13-triggered STAT6 activation. ELISA analyses of

CCL11 induction in the indicated MEFs treated with IL-4

(10 ng/ml) and TNF-a (50 ng/ml) for 30 hr.

Data are means ± SEM. See also Figure S5.
no other STATs were affected (Figure S6A), suggesting that

STAT6 can be phosphorylated and activated by these kinases,

as supported by the observation that TBK1/IKKε promoted

STAT6 activation in reporter assays (Figure S6B).

To systematically search for STAT6 phosphorylation site, we

individually mutated most of the conserved serines, threonines

and tyrosines on STAT6, and found that S407A and T572A showed

no response to virus but responded to IL-4/13 perfectly (Fig-

ure S6C), indicating that S407 or T572 might be critical sites in

virus-induced but not IL-4/13-induced STAT6 activation. Impor-

tantly, S407 lies within a consensus motif for TBK1 phosphoryla-

tion (Soulat et al., 2008), which was confirmed by in vitro kinase

assay (Figure 6E). TBK1 IP-ed from 293 cells infected with SeV

was found to phosphorylate STAT6 but not STAT2 or STAT3.

Furthermore, phosphorylation of peptide 358–427 was greatly

impaired when S407 was mutated. Besides, no TBK1 phosphor-

ylation site was indicated in regions 1-358 or 427-610, thus T572

is unlikely the target site of TBK1. We also found evidence for

the existence of other TBK1 phosphorylation site(s) on the

C terminus of STAT6. These data suggest that TBK1 phosphor-

ylates STAT6 in response to virus infection.

Consistently, TBK1 deficiency wiped out STAT6 phosphoryla-

tion by poly (I:C) transfection (Figure 6F) and abolished upregu-

lation of STAT6-dependent genes both at the mRNA level (Fig-

ure S6D) and the protein level (Figure 6G). Reconstitution of

Tbk1�/� MEFs with WT, but not kinase-dead TBK1 (KD-TBK1)

restored STAT6 activation, emphasizing the importance of

TBK1 kinase activity. These data collectively indicate that

TBK1 plays an essential role in STAT6 phosphorylation and

activation during virus infection.

STAT6 Is Required for Antiviral Immunity In Vivo
Finally we assessed the physiological function of STAT6 using

Stat6�/� mice and cells. STAT6 was required for virus-, but not
TLR-induced CCL2/20 production in peritoneal macrophages

(Figure 7A), suggesting that the new activation circuit is

restricted to intracellular nucleic acids. Notably, CCL2 produc-

tion was completely lost in sera and in organs from Stat6�/�

mice intravenously infected with virus while CCL20 induction

was only partially impaired (Figures 7C and 7D), suggesting an

absolute STAT6-dependence for CCL2 induction and a partial

STAT6-reliance for CCL20 expression. The same was true for

macrophages, BMDMs and MEFs (Figures 7A and 7B and

Figure S7B).

We also investigated whether virus-induced STAT6 signaling

involves other virus-activated transcription factors or compo-

nents including NF-kB and IRF3. Inhibition of NF-kB by IkB-SR

(Brockman et al., 1995) overexpression did not affect virus-

induced CCL20 production while slightly reduced CCL2 produc-

tion (Figure S7A); in parallel experiments, IRF3 deficiency

showed no effects at all (Figure 7B). This result indicates that

neither NF-kB nor IRF3 is critical for virus-induced STAT6

signaling, suggesting that the bifurcating of STAT6-medieated

signaling occurs at an early stage. Data in MEFs and BMDMs

from WT, Il-4r–/– and Stat6�/� mice supported a requirement

for STAT6 but not IL-4/IL-4R in virus-induced cytokine produc-

tion (Figures 7B and 7I and Figure S7B). Severe infiltration of

monocytes was observed in the lungs of WT and Il-4r–/– mice,

compared to no infiltration in those of Stat6�/� mice after virus

infection (Figure 7E and Figure S7C). In accordance with the

above results, virus titer in the lungs and livers of Stat6�/�

mice was higher than WT controls (Figure 7F), and Stat6�/�

mice were more susceptible to both VSV and HSV-1 infection

(Figures 7G and 7H) than WT and Il-4r–/– mice (Figures S7D

and S7E). Reconstitution with WT, but not L551A- or S407

A-STAT6 restored CCL2/20 production in Stat6�/� MEFs after

virus infection (Figure 7I), whereas all these forms of STAT6

restored CCL11 production in response to IL-4 (Figure 7J),
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Figure 6. TBK1 Is Required for Virus-Induced STAT6 Activation

(A) SeV-induced STAT6 phosphorylation is JAK-independent. U1A cells untreated or pretreated with JAK inhibitors CP690550 (CP) or Ruxolitinib (Rux) at the

indicated concentrations for 4 hr were left untreated (Con), infected with SeV for 10 hr or treated with IL-4 for 2 hr. Phosphorylation of STAT6 and IRF3 was

analyzed by western blot.

(B) JAKs are not phosphorylated in U5A cells after virus infection. U5A cells were infected with SeV for the indicated hours. Phosphorylation of STAT6, IRF3 and

JAKs was analyzed by western blot. PC, positive control in which 2fTGH cells were treated for 0.5 hr with the indicated cytokines.

(C) TBK1/IKKε and IKKb overexpression leads to STAT6 mobility change. 293 cells transfected with Flag-STAT6 and the indicated HA-tagged kinases were

analyzed by western blot with a-Flag (STAT6, top) and a-HA (kinases, bottom).

(D) STAT6-S407 is required for virus-induced STAT6 activation. 293 cells transfected with an E3-Luc and wild-type (WT) or mutant STAT6 were infected with SeV

for 24 hr or treated with IL-13 for 12 hr. STAT6 activation was analyzed using luciferase assay (fold induction). A407S, the reversed S407A.

(E) TBK1 phosphorylates STAT6 on S407 in vitro in a virus infection-dependent way. 293 cells expressing Flag-TBK1 were mock-infected (Con) or infected with

SeV for 8 hr. Cell lysates were IPedwith a-Flag and analyzed by either western blot with a-Flag (bottom) or the kinase assay using the indicated GST-polypeptides

as substrates (top). Purified GST-proteins and polypeptides were separated by SDS-PAGE and stained with Coomassie blue (middle).

(F) TBK1 is required for virus-induced STAT6 phosphorylation. WT and Tbk1–/– MEFs expressing hSTAT6 were transfected with poly (I:C) or treated with IL-4.

STAT6 phosphorylation was analyzed by western blot.

(G) Impaired STAT6-regulated cytokine induction in Tbk1–/– MEFs. ELISA analyses of cytokine production in WT, Tbk1–/–, Tbk1–/–-TBK1 and Tbk1–/–-KD-TBK1

(Tbk1–/– MEFs reconstituted with kinase-dead TBK1) infected with the indicated viruses. Expression of TBK1 was analyzed by western blot with a-Flag (bottom).

Data are means ± SEM. See also Figure S6.
demonstrating that distinct mechanisms are employed by cells

to activate STAT6 in response to diverse challenges.

DISCUSSION

The present study shows that STAT6 is activated by intracellular

non-self nucleic acids which lead to innate immune activation.

STAT6 activated in this manner regulates a specific set of genes

that are required for the recruitment of various immune cells

to the site of infection. The mechanism employed for STAT6

activation by virus is distinct from that by cytokines like IL-4/13

in the canonical pathway (Figure S7F). Thus, our study identifies

a previously unknown STAT6 activating cascade which plays

a critical role in innate immunity against microbial infection.

Virus Infection Triggers a Cell Intrinsic Pathway
of STAT6 Activation
We have presented several lines of evidence indicating that virus

infection triggers a cell intrinsic pathway leading to STAT6 acti-

vation. First, STAT6 phosphorylation occurred prior to (or no later

than) the phosphorylation of IRF3 and other STATs, supporting
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a primary response of STAT6 to virus infection. Second, upon

virus infection, STAT6-regulated chemokines were upregulated

simultaneously with type I IFNs and IL-8. Third, virus-induced

STAT6 phosphorylation persisted in cycloheximide- pretreated

cells that are unable to carry out protein synthesis. Fourth, condi-

tion medium-treated cells showed STAT1/3/5 phosphorylation,

but not STAT6 phosphorylation. Fifth, virus-activated STAT6

regulates a specific set of genes involved in immune cell homing;

these target genes are different from most of known STAT6-

regulated genes. Finally, STAT6 point mutation revealed a

distinct activating mechanism employed by cells in response

to virus.

Based on the data presented, we proposed a working model

for STAT6 activation in response to intracellular nucleic acids

(Figure S7F), in which STING plays a central role to integrate

signals coming from both RNA and DNA virus infection. Upon

DNA virus infection, STING is first activated and then recruits

STAT6. TBK1 is also recruited by STING to phosphorylate

STAT6 on S407, which in turn activates another unidentified

tyrosine kinase to phosphorylate STAT6 on Y641, leading to the

homodimerization and nucleus translocation of STAT6. STAT6
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Figure 7. STAT6 Is Required for Antiviral Innate Immunity In Vivo

(A and B) ELISA analyses of cytokine production in peritoneal macrophages (A) andMEFs (B) fromWT, Il-4r–/–, Irf3–/– and Stat6–/–mice infected with the indicated

viruses for 24 hr or treated with CpG DNA, LPS or MALP2 for 6 hr.

(C and D) ELISA analyses of cytokine production in sera (C) and in organs (D) of WT and Stat6–/– mice (n = 3) intravenously infected with the indicated viruses for

48 hr.

(E) Impaired pathology of Stat6–/– mice in response to virus. Hematoxylin and eosin staining of lung sections from mice in (D).

(F) WT and Stat6–/– mice (n = 4) were infected with VSV for 72 hr. VSV titers were determined by standard plaque assays (top). pfu, plaque forming units.

Expression of VSV G protein was analyzed by western blot with a-VSV-G (bottom).

(G and H) Survival of �7-week-old WT and Stat6–/– mice intravenously infected with VSV (23 107 pfu per mouse) (n = 12, G) or HSV-1 (3.33 106 pfu per mouse)

(n = 12, H). p < 0.0001, p values from t test.

(I) Cytokine production in WT, Stat6–/–, Stat6–/–-hSTAT6, Stat6–/–-hSTAT6-L551A and Stat6–/–-hSTAT6- S407A MEFs infected with the indicated viruses for 24 hr.

Expression of STAT6 was analyzed by western blot with a-Flag (bottom).

(J) ELISA analyses of CCL11 production in cells from (I) and other indicated MEFs treated with IL-4 (10 ng/ml) and TNF-a (50 ng/ml) for 30 hr.

Data are means ± SEM. See also Figure S7.
dimer then binds to its target sites to initiate transcription. On

the other hand, RNA virus infection triggers STING activation

through STING-MAVS interaction on MAVS-resident MAM

or peroxisomal membrane; activated STING then dissociates

with MAVS, and recruits STAT6 and TBK1, leading to STAT6

activation. Although it remains unclear whether the mitochon-

drial or the peroxisomal MAVS transmits the signal to STAT6,

our results indicate that STING again plays a crucial role during

this process.

STAT6 Activation by Virus Differs from the Canonical
Pathway
STAT6 activation in response to viral infection is different from

that by cytokines through the canonical pathway. First, virus-

induced STAT6 activation is JAK-independent, Since the

process is normal in individual JAK-deficient cells and is unaf-

fected by treatment with Jak Inhibitors. Critically, in U5A cells

virus infection did not induce JAK phosphorylation whereas

STAT6 phosphorylation was obvious. Second, STAT6 activation

by virus was not initiated by STAT6-receptor interaction, in which
SH2 was critical, but by STAT6-STING interaction, in which

DBD of STAT6 and C terminus of STING were required. Third,

L551 is critical only in virus-induced STAT6 activation. The impor-

tance of this residue was shown by the observation that L551A

interacted with TBK1 constitutively, in a way that probably

affected TBK1 phosphorylation of STAT6 (data not shown).

Moreover, our studies in STAT2-deficient cells exclude the

formation of STAT2/STAT6 heterodimers reported before (Gupta

et al., 1999).

Besides Y641, STAT6 also undergoes S407 phosphorylation

after virus infection. TBK1/IKKε overexpression causes a

prominent shift in the molecular weight of STAT6, but no other

STATs. TBK1-mediated virus-dependent phosphorylation was

confirmed in vitro. Importantly, S407A abrogates STAT6 activa-

tion by virus but not IL-4/13, which is also the case in S407A-

STAT6 reconstituted Stat6�/� MEFs. We believe that virus

induces phospho-S407 (P-S407 for short, see bellow) is prior to

P-Y641, based on two findings: 1) S407A-STAT6 underwent P-

Y641 by IL-4/13 but not virus; 2) IL-4 but not virus induced

STAT6 P-Y641 in Tbk1�/� and STING�/�MEFs. The physiological
Cell 147, 436–446, October 14, 2011 ª2011 Elsevier Inc. 443



relevance of S407 phosphorylationwill be further tested if a STAT6

antibody recognizing this phosphorylated site is available.

Virus induces different STAT6 target genes compared to IL-4/

13. We interpret the specificity as a possible result of conforma-

tion change in STAT6 dimers that favor distinct target

sequences, since S407 phosphorylation is unique to virus infec-

tion. Also, cofactor(s) may be required that differentially respond

to virus and IL-4/13.

Virus-Activated STAT6 Induces Specific Chemokines
Virus triggers STAT6 to induce a set of chemokines capable of

attracting various immune cells: CCL2 for monocytes, macro-

phages and T cells, etc. (Yadav et al., 2010); CCL20 for CCR6-

expressing B cells, T cells and dendritic cells; CCL26 for

eosinophils, basophils and subsets of NK cells, etc. (Nakayama

et al., 2010). Deregulation of these chemokines are involved in

diseases associated with the infiltration of immune cells (Boring

et al., 1998; Gosling et al., 1999; Harper et al., 2009; Hedrick

et al., 2009; Weckmann et al., 2007). Interestingly, CCL2 and

CCL20 can be induced by various stimuli including mammalian

and bacterial DNA in a TBK1/IKKε-dependent manner (Ishii

et al., 2006), but the role of STAT6 in these situations has not

been reported. CCL26 is found only in human and is differently

regulated by STAT6 in response to IL-4/13 and virus.

We observed much less infiltration of immune cells and higher

viral loads in organs of virus-infected Stat6–/–mice. Consistently,

Stat6–/– mice are more susceptible to virus than their WT and

Il-4r–/– counterparts. The findings explain the hypersensitivity of

knockout mice to virus as an outcome of delayed or inadequate

immune cell recruitment due to impaired chemokine production

(Figures 7E and S7C), supported by abundant cases (Hokeness

et al., 2005; Jia et al., 2008).

Recently Toxoplasma gondii infection was shown to induce

STAT6 P-Y641 and activation in HeLa cells independent of

IL-4, but the mechanism was unclear (Ahn et al., 2009). Consid-

ering that in all tested cells STAT6 can be activated by virus

and induces specific genes for immune cell homing, the role

of STAT6 on this side now starts to emerge. Moreover, the

finding that Stat6�/� mice are susceptible to virus infection

may shed lights on the function of STAT6 in virus-related

immune diseases.

EXPERIMENTAL PROCEDURES

Plasmids, cells, viruses, antibodies, ELISA kits and other reagents used and

detailed experimental procedures can be found in Extended Experimental

Procedures.

Mice

Stat6�/� mice on a BALB/c background (C.129S2-Stat6tm1Gru/J) were

purchased from Jackson Labs (Bar Harbor, Me). Il-4r–/– mice on a BALB/c

background were obtained from Max Delbruck Center for Molecular Medicine

as described previously (Li et al., 2008), Mavs+/– mice on a 129/Sv/C57BL/6

background were a kind gift from Dr. Zhijian J. Chen. BALB/c mice were

purchased from Laboratory Animal Center. Mice were kept and bred in path-

ogen-free conditions. All animal studies were conducted at the AAALAC-

approved Animal Facility in the Laboratory Animal Center of Peking University.

Experiments were undertaken in accordance with the National Institute of

Health Guide for Care and Use of Laboratory Animals, with the approval of

Peking University Laboratory Animal Center, Beijing.
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Coimmunoprecipitation, Immunoblot Analysis, Native PAGE,

RT-PCR, RNAi, Type I IFN Bioassay, Luciferase Reporter Assay,

VSV Plaque Assays, and Subcellular Fractionation

These experiments were performed as previously described (Sun et al., 2009;

You et al., 2009).

Yeast Two-Hybrid Screening

The experiment was performed as previously described (Sun et al., 2009).

C-terminal human STING (aa 178-379) was used as bait to screen a human

leukocyte cDNA library (Clontech, Palo Alto, CA).

Immunofluorescent Confocal Microscopy

The experiments were performed as described (Sun et al., 2009). Imaging of

the cells was carried out using Leica TCS SP2 confocal system under a 3

100 oil objective.

In Vitro Kinase Assay

The experiment was performed as previously described (Jiang et al., 2002)

with minor modification. Human STATs WT or truncation coding sequences

were cloned into pGEX-KG.GST protein was purifiedwith glutathione-agarose

beads and eluted by glutathione. Purified proteins were examined by SDS-

PAGE and Coomassie blue staining. TBK1 immunoprecipitants were incu-

bated with 1 mg purified GST protein in 20 ml kinase buffer containing 10 mM

HEPES (pH 7.4), 1 mM dithiothreitol, 5 mM MgCl2 and 5 mCi of g32P-ATP

(3000 Ci/mM) at 25�C for 15 min. Samples were resolved by SDS-PAGE, dried

and visualized by autoradiography.

Microarray Analysis

RNA was extracted with Trizol (Invitrogen) and verified with RNA integrity

number (RIN). The aminoallyl-RNA (aRNA) probes labeled with NHS-Cy5

(Amersham) were hybridized at 50�C for 16 hr to the Human Whole Genome

OneArray TM Version 4.3 (PhalanxBiotech Group, Taiwan), scanned with

Axon 4000B Scanner (Molecular Devices, USA) and analyzed with Genepix

software (Molecular Devices USA). Array data are available at Gene Expres-

sion Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under the accession

number GSE26435. Detailed procedures are described in the Extended Exper-

imental Procedures.

Lung Histology

Lungs from control or virus-infected mice were dissected, fixed in 10% phos-

phate-buffered formalin, embedded into paraffin, sectioned, stained with

hematoxylin-eosin solution and examined by light microscopy for histologic

changes.

Isolation of MEFs, BMDMs, and Macrophages

Embryonic fibroblasts (MEFs) from WT and mutant mice were prepared from

day 15 embryos and cultured in DMEM supplemented with 10% FBS. Bone

marrow derived macrophages (BMDMs) were isolated from tibia and femur.

Cells were cultured in 10 cm Petri-dish at 37�C for 5 days. At day 3, 5 ml

medium (DMEM with 20% FBS, glutamine and 30% L929 supernatant) was

added. Peritoneal macrophages were harvested from mice 4 days after thio-

glycollate (BD, Sparks, MD) injection, and cultured in DMEM supplemented

with 5% FBS. Cells were plated into 24-well plates and cultured in the absence

or presence of LPS (100 ng/ml), MALP-2 (100 ng/ml) and CpG (100 nM) for 6 hr,

or infectedwith the indicated virus for 24 hr. Cytokine production was analyzed

by ELISA or bioassay.

Virus Infection

Cells were infected with SeV (0.1 multiplicity of infection (M.O.I.)), HSV-1(5

M.O.I.) or VSV (1 M.O.I) for 1 h; cells were washed with PBS and cultured in

fresh media. Cytokine production was analyzed 24 hr later. For in vivo cytokine

production studies, age- and sex-matched groups of mice were intravenously

infected with HSV-1 (1.43 107 pfu per mouse), VSV (53 107 pfu per mouse) or

SeV (1 000 TCID 50/ml, 200 ml per mouse).

Statistical Analysis

Student’s t test was used to analyze data.

http://www.ncbi.nlm.nih.gov/geo/
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