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Abstract

Neuroimaging community usually employs spatial smoothing to denoise magnetic resonance imaging (MRI) data, e.g.,
Gaussian smoothing kernels. Such an isotropic diffusion (ISD) based smoothing is widely adopted for denoising purpose
due to its easy implementation and efficient computation. Beyond these advantages, Gaussian smoothing kernels tend to
blur the edges, curvature and texture of images. Researchers have proposed anisotropic diffusion (ASD) and non-local
diffusion (NLD) kernels. We recently demonstrated the effect of these new filtering paradigms on preprocessing real
degraded MRI images from three individual subjects. Here, to further systematically investigate the effects at a group level,
we collected both structural and functional MRI data from 23 participants. We first evaluated the three smoothing
strategies’ impact on brain extraction, segmentation and registration. Finally, we investigated how they affect subsequent
mapping of default network based on resting-state functional MRI (R-fMRI) data. Our findings suggest that NLD-based
spatial smoothing maybe more effective and reliable at improving the quality of both MRI data preprocessing and default
network mapping. We thus recommend NLD may become a promising method of smoothing structural MRI images of R-
fMRI pipeline.
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Introduction

Partial Differential Equation (PDE), a well-established mathe-

matical theory, has given its advances on denoising images in

terms of the strong theoretical framework with simple and efficient

numerical strategies [1]. There are three main PDE-derived filters

used to denoise or smooth images: Gaussian smoothing (isotropic

diffusion equation, ISD) [2], anisotropic diffusion equations (ASD)

[3] and non-local means diffusion (NLD) [4] (see [5,6] for reviews).

As a consequence of isotropic diffusion, the ISD is optimal in flat

parts of the image but edges and texture are blurred. The ASD

attempts to avoid the drawback of ISD by smoothing the image at

a pixel only in the direction orthogonal to its gradient (i.e.,

smoothing along with edges). Both ISD and ASD are local

smoothers and hard to preserve some global features of images

(e.g., texture or periodic pattern). To address this issue, the NLD

smoothes an image by taking into account the similarity of the

geometrical configuration in a whole neighborhood (i.e., a patch of

the image).

Currently, the ISD (i.e., a Gaussian smoothing kernel or heat

kernel) is the most popular method used to reduce noise in

structural and functional images of both 3D brain volume [7] and

2D cortical surface [8,9]. The effect of applying the ASD to

structural MRI data analysis have also been examined in both

brain volume [10] and surface [11,12]. Most recently, researchers

have started to employ the NLD to denoise 3D structural brain

images and presented its performance [13–16]. Although very

rarely, the NLD was also applied to restore cortical surfaces based

on their level sets [17]. While discrepancies of the smoothing

performance between volume- and surface-based structural brain

image analysis were widely investigated [18,19], the direct

comparison between the three spatial smoothing technics seems

missing. As an initial effort along this direction, using structural

MRI images from three subjects, we recently demonstrated the

advantages of NLD in brain extraction, segmentation and

registration for volume-based MRI analysis [20]. However, to

our best knowledge, there is no statistical comparison on the

performance of the three PDE-based smoothing of structural MRI

data and the impact on the subsequent functional MRI analysis at

a group level.

Here, we collected MRI data from 23 normal healthy controls

and performed such comparisons by using volume-based brain

image analysis (of note, same comparisons can be done on the

cortical surface). Specifically, we first applied ISD, ASD and NLD
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to smooth individual T1 brain images to statistically evaluate their

abilities to remove image noise and subsequent effects of structural

brain processing. Three common steps of processing structural

MRI data were chosen to demonstrate smoothing effects: brain

extraction [21], tissue segmentation [22], and registration [23].

Second, according to the fact that these three structural processing

steps are normally served as common steps of preprocessing

resting-state functional MRI (R-fMRI) data [24], we thus mapped

out the posterior cingulate cortex (PCC)-seeded default networks

by using each of three smoothing filters in the structural

preprocessing of an R-fMRI analysis pipeline and performed

statistical comparisons between each other to evaluate the impact

of different structural smoothing effects on R-fMRI analyses.

Finally, to assess if these smoothing methods can improve the long-

term test-retest reliability of PCC-anchored default network, two

repeated R-fMRI measures were collected for each of nine

participant separated by one year (i.e., one-year test-retest).

Materials and Methods

1. Participants and imaging procedure
Twenty-three participants were scanned on a Phillips Achieva

1.5 Tesla scanner. For each participant, a high-resolution T1

anatomical image was obtained (TR = 7.1 ms; TE = 3.2 ms; 160

slices; FOV = 256 mm) and 240 EPI (TR = 2.0 s; TE = 50 ms;

thickness/gap = 5 mm/1 mm; 22 slices; FOV = 230 mm; total

scan time = 8 min6 s) R-fMRI images were collected. Among

these subjects, nine subjects were scanned twice separated by one

year, i.e., a one-year test-retest design. Of note, to keep the

scanner’s settings as consistent as possible between the test/retest

scans, no any updates of hardware/software occurred to the

scanner during the one-year duration. All participants are college

students from Henan University of Traditional Chinese Medicine

and had no history of psychiatric or neurological illness, as

confirmed by clinical assessments. All subjects gave written,

informed consent to participate in the study, which was approved

by the Neuroimaging Acupuncture Research Center of Henan

University of Traditional Chinese Medicine.

2. PDE-based spatial smoothing theory
The intensity of an MRI image can be defined in a bounded

domain V of R3 and denoted by u(x) for x~(x,y,z) [ R3. We use

jxj~(x2zy2zz2)
1
2 and x1

:x2~x1x2zy1y2zz1z2 as the norm

and scalar product. ux~
Lu

Lx
,uy~

Lu

Ly
,uz~

Lu

Lz
,uxy~

L2u

LxLy
are the

derivates of u. The gradient of u is written as Du~(ux,uy,uz) and

the Laplacian of u as Du~uxxzuyyzuzz.

The ISD (i.e., Gaussian smoothing) of image u(x) is character-

ized as in the equation below,

ISDs½u(x)�~Gs ? u&uzs2Du, Gs(x)~
1

4ps2
e
{
jxj2
4s2 : ð1Þ

In equation (1), Gs is a Gaussian kernel with standard deviation s
and ? denotes a convolution operation. The smoothing operation

is mathematically equivalent to solve the classic heat PDE
Lu(x,t)

Lt
~Du, leading to weighted sum at each voxel.

A gaussian smoothing is optimal for harmonic functions.

However, it performs poorly on edges or texture where its

Laplacian is large. To avoid this drawback (i.e., blurring effect),

ASD smoothes the image u at x only in the direction orthogonal to

Du(x):

ASDs½u(x)�&uz
s2

2
jDujcurv(u)(x): ð2Þ

In equation (2), curv(u) denotes the curvature. Similarly, the image

smoothed with the ASD is a solution of the curve motion PDE
Lu(x,t)

Lt
~jDujcurv(u).

Both ISD and ASD are local neighborhood filters, which mean

they average the intensity of voxels within a small spatial

neighborhood. With such a strategy, it is difficult to maintain

image texture – not a local feature of images. NLD addresses this

problem by generalizing the diffusion domain to whole image

domain V. The similarity between two voxels x and y will be

based on the similarity of the intensity gray level between their

neighbors and computed with a Gaussian distance encoded as a

kernel function

wu(x,y)~

ð
R3

Gs0
(t)(u(xzt){u(yzt))2dt:

According to this distance, let r,s, and aw0 such that s,r?0 and

r~O(sa). Define two functions as

g(t)~
1

3

te{t2

E(t)
for t=0,g(0)~

1

6
where E(t)~

ðt

0

e{s2
ds:

and

f (t)~3g(t)z
3g(t)

t2
{

1

2t2
for t=0 and f (0)~

1

6
,

then NLD is

NLDr,s½u(x)�&uz

s2 Du

6
if av1,

s2½g(
s

r
jDuj)uTTzf (

s

r
jDuj)uNN � if a~1,
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3

2
:

0
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ð3Þ

where uTT and uNN are tangent and orthogonal to the level line

passing through x, respectively. In theory, the NLD operation can

be thought as the behavior of a non-local heat equation [25]:

Lu(x,t)

Lt
~Dwu~

ð
R3

(u(y,t){u(x,t))wu(x,y)dy:

There seems no public neuroimaging package implementing all

the three PDE-based smoothing methods. Accordingly, we carried

out the above three spatial smoothing of individual T1 data from

three publicly free software packages, respectively: 1) FMRIB

Software Library (FSL: http://www.fmrib.ox.ac.uk/fsl, version

4.1) consisting of various comprehensive tools for brain imaging

data, 2) Analysis of Functional NeuroImaging (AFNI: http://afni.

nimh.nih.gov/afni, version 2011_05_26_1457) mainly designed

for fMRI analysis and 3) Voxel-based morphometry (VBM) extent

of Statistical Parametric Mapping (SPM: http://dbm.neuro.uni-

jena.de/vbm/download, version 8). Another reason of using FSL

and AFNI is that they both are the packages employed in the R-

fMRI pipeline of our interest [24]. Specifically, the ISD was

PDE-Based Spatial Smoothing
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performed with a parameter s~0:85 mm which corresponds to a

2 mm FWHM Gaussian kernel smoothing using the command

fslmaths in FSL. It numerically implements ISD as Gaussian

kernel weighted mean filtering. The ASD used a parameter

s~1 mm which is implemented in AFNI by using the command

3danisosmooth with 2 iterations and other default settings. This

command employs a scheme for coherence-enhancing diffusion

filtering with optimized rotation invariance based on an additive

operator splitting (AOS) numerical strategy that leads to simple

linear systems of equations [3,26]. The NLD was performed by

using a command cg_sanlm from the VBM8 toolbox [27]. It

implemented an adaptive version of the optimized block-wise

NLD to deal with spatially varying noise [15]. The optimized

block-wise NLD uses particle swarm optimization based on partial

least squares modeling to extend classical NLD on 2D images to

that on 3D images by automatically tuning the smoothing

parameter, selecting the most relevant voxels, dividing brain space

into blocks and parallelizing computation to reduce the complexity

of computation [13].

3. Structural MRI analysis: brain extraction, registration,
segmentation

To evaluate the effect of three spatial smoothing approaches, we

chose the three most frequently used preprocessing steps in both

anatomical and functional MRI applications and quantify their

performance on the denoised data: 1) brain extraction (BET) is

widely employed as a preprocessing step in both computational

anatomy and functional MRI analyses [24,28]; 2) spatial

normalization or registration is a process of matching an individual

anatomical brain to a standard brain, which is a key part of group-

level statistical analyses requiring all individual data to be in the

same anatomical space; 3) brain tissue segmentation classifies the

brain into three different tissues including grey matter (GM), white

matter (WM) and cerebrospinal fluid (CSF). Such segmentation is

a key to provide tissue references for functional MRI studies. Of

note, BET as the first step is widely used as an initial processing in

brain registration and segmentation. However, here, we extracted

the brain manually to provide a golden standard of the brain

extraction. This golden brain mask can extract brains from T1

images smoothed by ISD, ASD and NLD for subsequent brain

registration and segmentation to exclude the impact of brain

extraction quality on the two processes.

The brain extraction was done by using a command bet in

FMRIB Software Library (FSL) [7] with parameters of ‘-f 0.3 -m –

R’. Specifically, for each spatial smoothing method, the denoised

T1 data were used as the inputs of bet. The original T1 data were

also betted to show the impact of noise on the brain extraction (i.e.,

raw smoothing). To evaluate the effects of spatial smoothing, we

proposed a quantitative index

Qbet(A,B)~
jABj{jAzB{2ABj

jAzBj

where jAj means the number of nonzero values in a brain mask A

which includes 0 or 1 values. Obviously, Qbet is {1 if there is no

overlap between brain masks A and B as well as 1 if A and B are

perfectly overlapped. Of note, Qbet is similar to the common index

for measuring the overlap rate, such as dice coefficient

Dbet(A,B)~2jABj=(jAjzjBj). In fact, there is a monotonically

increasing relationship between the two indices:

Qbet~
3Dbet{2

2{Dbet

, 0ƒDbetƒ1:

Given the golden brain mask G and a brain mask A based on any

of three spatial smoothing methods, Qbet(A,G) evaluates the effect

of denoise on brain extraction performance.

To check the effects of these denoising methods on spatial

normalization, for each smoothing approach, a fully automated

robust and accurate tool for linear registration (12-parameter

affine and spatial correlation-based cost-function) between indi-

vidual T1 brains and the standard MNI152 brain was first

computed in FMRIB’s Linear Image Registration Tool (FLIRT).

Based on this affine transformation, FMRIB’s Non-linear Image

Registration Tool (FNIRT) spatially normalized the T1 brain to

match the standard brain by using a local spline basis deformation

model [23]. It is difficult to find an objective index measuring the

brain registration quality. Accordingly, for each T1 brain data

from three participants, we compute the spatial correlation

rk(k~1, � � � ,23) between normalized individual T1 brain Ak

and the MNI152 standard brain T ;

rk~

PN
n~1

(Ak(n){Ak)(T(n){T)

PN
n~1

(Ak(n){Ak)2 PN
n~1

(T(n){T)2

� �1=2
:

In above euqation, N is the number of voxels in the MNI152

standard brain T and T(n) represents its intensity at the n-th

voxel. We visually inspected the registration quality in terms of the

important brain gyri and sulci.

FMRIB’s Automated Segmentation Tool (FAST) was used to

segment the T1 image into three tissues [22] with parameters of ‘-t

1 -g –p’. The FAST command based on a hidden Markov random

field model and an associated Expectation-Maximization algo-

rithm is fully automated and can also produce a bias field-

corrected input image and a probabilistic and/or partial volume

tissue segmentation. Again, the original T1 brain data were also

fed into FAST to show the noise effect on the brain tissue

segmentation. For each of 23 participants (k~1, � � � ,23), the

distributions of each type tissue partial volume estimation (PVE)

Atissue were calculated for evaluating spatial smoothing effects

Pk
tissue(x)~prob(Ak

tissue(n)~x),n~1, � � � ,N,

where tissue can be GM, WM or CSF, N is the number of voxels

in the T1 brain. Specifically, to explore how different smoothing

strategies change PVE values of brain tissues, we estimated the

histogram of partial volume estimation (PVE) by using five bins

(i.e., 0–0.2; 0.2–0.4; 0.4–0.6; 0.6–0.8; 0.8–1.0).

For each of the three structural processing (i.e., brain extraction,

registration and segmentation), paired t-tests were performed to

show if there is any statistical difference in above measures

between each pair of smoothing approaches.

4. Functional MRI analysis: mapping default network
The 1000 Functional Connectomes Project scripts http://www.

nitrc.org/projects/fcon_1000 was selected as our R-fMRI pipeline

of mapping resting state functional networks [24]. To evaluate the

overall impact of PDE-based smoothing filters on the R-fMRI

pipeline, we chose the well-known default network as our target of

comparisons [29]. For each participant, image preprocessing

comprises both anatomical and functional processing steps.

Specifically, the anatomical processing steps included: 1) removal

of non-brain tissue based on the anatomical images using the brain

extraction tool in FSL, 3) automated segmentation of the GM,

PDE-Based Spatial Smoothing
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WM and CSF based on extracted brains, 4) a two-step registration

of the high-resolution anatomical image to the MNI152 standard

brain space: first, a 12-degrees-of-freedom linear affine transfor-

mation from individual brain image to the template was computed

using FLIRT. Subsequently, combining the head images, the

registration was refined using FNIRT nonlinear registration.

Functional preprocessing includes: 1) discarding the first 5 EPI

volumes from each scan to allow for signal equilibration, 2) slice

timing correction, 3) 3D motion correction, 4) co-registration

between individual functional and anatomical brain images using

a 6-degrees-of-freedom linear affine transformation, 5) spatial

smoothing (6 mm FWHM Gaussian kernel), 6) 4D mean-based

intensity normalization, 7) band-pass temporal filtering (0.01–

0.1 Hz), 8) removal of linear and quadratic trends, 9) removal of

nine nuisance covariates (signals from WM, CSF, the full brain,

and six motion parameters). The resultant 4D residual time series

was used for subsequent mapping of participant-level default

network. The final maps of individual default network were

spatially normalized to the 3 mm MNI152 standard space.

For each smoothing method, we first employed it to denoise all

individual T1 images. The denoised T1 images were then fed into

the R-fMRI pipeline of producing individual default network

maps. The core seed of default network was adopted from [30]

with the coordinates (28,256,26) in MNI standard brain space to

map resting-state functional connectivity (RSFC) between each

voxel and the seed. The group-level default network was generated

by a one-sample t-tests on all individual default networks by using

the R-fMRI pipeline with raw T1 images (i.e., no smoothing

processing). We then performed three paired comparisons on

individual default network maps across 23 subjects: ISD vs Raw,

ASD vs Raw and NLD vs Raw. Whole-brain correction for

multiple comparisons was performed (min Zw2.3; cluster

significance: pv0.05, corrected).

5. Functional MRI analysis: test-retest reliability
Using one-year test-retest R-fMRI datasets from the 9 subjects,

we assess if any of the three spatial smoothing methods can

improve the test-retest reliability of default network mapping [31].

As in our prior work [32–36], we computed intra-class correlation

coefficients (ICC) to quantify test-retest reliability. To calculate the

ICC for each voxel, we consider a random sample of n subjects

with d repeated measurements of a continuous variable Y
characterizing the default network RSFC with PCC. We denote

Yij as the i-th measurement made on the j-th subject (for

i~1, � � � ,d and j~1, � � � ,n). In the current situation, Yij denotes

the default network RSFC from the j-th participant’s i-th
measuring occasions. We apply a two-level linear mixed model

to each voxel as the following decomposition of Yij :

Yij~l0jzeij ,l0j~m00zp0j , ð4Þ

where m00 is a fixed parameter and pj and eij are independent

random effects normally distributed with mean 0 and variances s2
p

and s2
e . The term pj is the participant effect and eij is the

measurement error. The ICC was defined as

r~
s2

p

s2
pzs2

e

: ð5Þ

Obviously, the ICC has the desired property to characterize the

test-retest reliability, i.e., becoming smaller when s2
e become

larger. To avoid negative and get more accurate estimation of

sample ICC, the variance components in above linear mixed-

effects model (4) were estimated with the restricted maximum

likelihood (ReML) approach built in SAS PROC MIXED [37].

The above voxel-wise ICC computing procedure was implement-

ed in scripts combining MATLAB (Mathworks, Natick MA:

reading and writing 3D brain volumes) and SAS (SAS Institute

Inc., Cary NC: fitting mixed-effects linear model) commands.

Results

As we demonstrated in our previous work [20], applied to real

degraded raw T1 image (RAW), the NLD outperforms both ISD

and ASD smoothers (Figure 1). Specifically, the ISD largely

reduces the sharpness of GM-WM tissue boundaries while

suppressing the noise, depicted as the overall boundary pattern

in the difference image. By contrast, the ASD does good job in

preserving the boundaries. However, it still distorts textures which

is clearly presented in the ASD-RAW difference images.

Moreover, the ASD can also introduce flow-like artifacts along

tissue boundaries. As expected, the NLD produces rather uniform

noise distributions, achieving promising removal of noise.

1. Effects of denoising: structural data processing
To demonstrate the impact of different smoothing methods on

brain extraction of T1 images, we extracted the brain masks from

each smoothed T1 image and calculated overlap ratios Qbet

between the image and the mask via manual extraction. Scatter

plots in Figure 2A depicted the overlap values for all 23

participants. Paired two-sample t-tests revealed that NLD and

ASD exhibited significantly higher overlap ratio than ISD

(pv0.05). Clearly, ISD increases the individual variability of

brain extraction. In contrast, NLD produces the smallest

individual variability of overlap ratio though it did not show

significant extraction improvements than raw data.

Brain registration via FNIRT (a locally non-linear process)

resulted in different matching quality when the various methods of

spatial smoothing were applied to denoise T1 brain data

(Figure 2B). ASD demonstrated the worst performance (i.e., the

significantly lower spatial correlation). Both ISD and NLD showed

significantly higher spatial correlation than raw data (pv0.05;

Figure 2B). This could be related to various artifactual edge-like

flows introduced into the smoothed image by ASD.

As indicated by the grey matter probability map in Figure 3F,

above five bins correspond to different brain tissues: white matter

and CSF, grey-white matter boundary, level-1 grey matter, level-2

grey matter and level-3 grey matter. Our statistical analyses

showed that NLD most significantly increases the PVE amount

within level-2 grey matter tissues (Figure 3D) while both ISD and

ASD significantly increase PVE distribution within grey-white

matter boundary (Figure 3B) and level-1 grey-matter (Figure 3C).

This is not difficult to understand because of the local nature of

ISD and ASD smoothing filters, which is contrast to global feature

of NLD smoothing. Of note, NLD have been demonstrated very

effective to improve PVE recently [38].

2. Effects of PDE denoising: mapping default network
Consistent with many previous R-fMRI studies (see [29] for a

review), our R-fMRI pipeline with raw T1 data generated the

default network presenting both positive and negative functional

connectivity with PCC seed (Figure 4A). Figure 4B showed

significant changes of RSFC introduced by performing ISD on T1

images, decreasing functional connectivity with four key default

network areas: posterior cingulate cortex/precuneus (PCC/PCU),

medial prefrontal cortex (MPFC) and bilateral inferior parietal

PDE-Based Spatial Smoothing
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cortex (IPC). In contrast, ASD reduced both artifactual (mainly

subcortical regions around ventricles) and default network (PCC/

PCU) RSFC as well as increases of RSFC with a little part of

ventral PCC. Finally, NLD enhanced default network connectivity

in PCC without reducing of the default network connectivity.

However, as an advantage, it clearly suppressed the artifactual

connectivity.

3. Effects of PDE denoising: test-retest reliability
Using ReML-based ICC, the test-retest reliability maps of

default network connectivity maps generated by the R-fMRI

pipeline with the three spatial smoothing were calculated. Figures

S1, S2, S3, S4 depicted all reliable voxels (i.e., ICCw~0.5) for

default network with Raw, ISD, ASD and NLD smoothing

respectively. To explore the differences in test-retest reliability

among smoothing strategies, we first constructed a mask to include

all reliable voxels for any of four smoothing ways. That is, the

voxel showing ICCw~0:5 in any of four final ICC maps will be

included in the mask. Second, all pairs of ICC within the mask

between Raw and each of ISD/ASD/NLD smoothing were used

to generate a 2-dimensional histogram [39]. As in Figure 5A, ISD

indicated the most inconsistent spatial distribution of ICC values

with the Raw ICC map, displaying as the non-diagonal hot

coloring pattern. ISD also led to reduced test-retest reliability. In

contrast, both ASD and NLD generated consistent spatial

distribution of ICC with the Raw ICC map. But, different from

ASD, NLD produced more extent and higher ICC values

(Figure 5B and Figure 5C).

Discussion

We statistically compared the differences in performance of

three PDE-based spatial smoothing for MRI image processing and

demonstrated the feasibility of the non-local mean diffusion

technique in denoising T1 images and in improving accuracy

and test-retest reliability of MRI image processing. The NLD

approach tends to not only increase robustness of structural MRI

processing (e.g., brain extraction, segmentation and registration)

but improve the quality and reliability of mapping default network.

It is particularly valuable to adopt NLD in fMRI studies because

these studies often use T1 data polluted by unknown scanning

noise from a low-strength magnetic field (e.g., 1.5T). Indeed, as we

present in our previous study [20] and Figure 1 here, such denoise

procedure could produce high quality T1 images similar to that

from 3.0T scanner for cortical surface reconstruction [28].

Figure 1. The effect of PDE-derived smoothers on an Individual Degraded Structural Image. PDE-based MRI denoising. An individual T1
structural image (RAW) were denoised by three PDE-based smoothing kernels: ISD, ASD and NLD. The first row shows the denoised T1 brain images
as well as the second row depicts the difference images between each of the three smoothers and the raw noisy image.
doi:10.1371/journal.pone.0026703.g001

Figure 2. PDE-based Smoothing on Brain Extraction and Registration. For each of smoothing methods (Raw, ISD, ASD, NLD), scatter plots of
overlap ratio and spatial correlation for all 23 participants were depicted.
doi:10.1371/journal.pone.0026703.g002

PDE-Based Spatial Smoothing
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Although NLD has been extensively studied in several 2D

image processing fields, only a few recent studies have demon-

strated the utility of NLD for effectively denoising MRI datasets.

In [40], NLD exhibited the potential to reduce the Rician noise in

diffusion-weighted MRI (DW-MRI). Similarly, Liu et al. also

demonstrated the advantages of enhanced NLD to reduce Rician

noise in MRI images [16]. Automatic NLD-based MRI denoising

was systematically investigated in [14], illustrating significant

benefits over other denoising methods. Nevertheless, despite its

ability to remove noise, NLD is limited in computational speed

due to its global search process in three-dimensional brain space.

An optimized block-wise NLD was proposed in [13] to overcome

this drawback. More recently, this optimized NLD was extended

to deal with spatially-varying noise in MRI images [15].

A limitation of the current study is that we did not compare the

performance of PDE-based filters by directly applying them to R-

fMRI data. To our best knowledge, there is no study to examine

the impacts of directly applying NLD to fMRI images. In contrast,

there was a study employing ASD for detection of fMRI activation

[41]. According the fact that fMRI images are temporal signals, it

must be very interesting, particularly for NLD, to see how these

spatial smoothing filters change patterns of spin labeling or T2*

Figure 3. PDE-based Smoothing on Brain Tissue Segmentation. Scatter plots of probability of partial volume estimation for grey matter of 23
subjects. The histogram of partial volume estimation (PVE) using 5 bins (i.e., 0–0.2; 0.2–0.4; 0.4–0.6; 0.6–0.8; 0.8–1.0) indicate five different brain
tissues (F): white matter and CSF (A), grey-white matter boundary (B), level-1 grey matter (C), level-2 grey matter (D) and level-3 grey matter (E).
doi:10.1371/journal.pone.0026703.g003
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Figure 4. PDE-based Smoothing on Default Network Mapping. The group-level default network was generated by a one-sample t-tests on all
individual default networks by using the R-fMRI pipeline with raw T1 images (i.e., no smoothing processing). We then performed three paired
comparisons on individual default network maps across 16 subjects: ISD vs Raw, ASD vs Raw and NLD vs Raw. Whole-brain correction for multiple
comparisons was performed (min Zw2.3; cluster significance: pv0.05, corrected).
doi:10.1371/journal.pone.0026703.g004

Figure 5. PDE-based Smoothing on Test-Retest Reliability. Two-dimensional histogram of ICC values. Each ICC map of the three PDE-based
smoothing approaches was plotted versus the Raw ICC map: (A) ISD versus Raw, (B) ASD versus Raw, and (C) NLD versus Raw.
doi:10.1371/journal.pone.0026703.g005
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weighted BOLD R-fMRI activity, which will be further explored

in our future work.

In summary, our study confirmed the utility of non-local

diffusion equations in denoising degraded T1 MRI images. This

approach demonstrates a promising potential to improve various

fundamental MRI analytic processes including brain extraction,

tissue segmentation, registration and subsequent functional MRI

analyses. NLD method could serve as an initial preprocessing step

in future MRI studies.

Supporting Information

Figure S1 One-year Test-Retest Reliability Maps for
Default Network Mapping with Raw Structural Smooth-
ing. This figure depicts the voxel-wise one-year test-retest

reliability of PCC-derived resting-state functional connectivity or

default network. The axial views of the reliability maps are

displayed in radiological convention. The ICC map is thresholded

at ICC§0:5, with a minimum cluster size of 20 voxels.

(TIF)

Figure S2 One-year Test-Retest Reliability Maps for
Default Network Mapping with ISD Structural Smooth-
ing. This figure depicts the voxel-wise one-year test-retest

reliability of PCC-derived resting-state functional connectivity or

default network. The axial views of the reliability maps are

displayed in radiological convention. The ICC map is thresholded

at ICC§0:5, with a minimum cluster size of 20 voxels.

(TIF)

Figure S3 One-year Test-Retest Reliability Maps for
Default Network Mapping with ASD Structural Smooth-
ing. This figure depicts the voxel-wise one-year test-retest

reliability of PCC-derived resting-state functional connectivity or

default network. The axial views of the reliability maps are

displayed in radiological convention. The ICC map is thresholded

at ICC§0:5, with a minimum cluster size of 20 voxels.

(TIF)

Figure S4 One-year Test-Retest Reliability Maps for
Default Network Mapping with NLD Structural Smooth-
ing. This figure depicts the voxel-wise one-year test-retest

reliability of PCC-derived resting-state functional connectivity or

default network. The axial views of the reliability maps are

displayed in radiological convention. The ICC map is thresholded

at ICC§0:5, with a minimum cluster size of 20 voxels.

(TIF)
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40. Wiest-Daessle N, Prima S, Coupé P, Morrissey SP, Barillot C (2008) Rician

noise removal by non-local means filtering for low signal-to-noise ratio MRI:
Applications to DT-MRI. Med Image Comput Comput Assist Interv 11:

171–179.

41. Kim HY, Giacomantone J, Cho ZH (2005) Robust anisotropic diffusion to
produce enhanced statistical parametric map from noisy fMRI. Comp Vis and

Image Understand 99: 435–452.

PDE-Based Spatial Smoothing

PLoS ONE | www.plosone.org 9 October 2011 | Volume 6 | Issue 10 | e26703


