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Influenza viruses continue to cause significant morbidity and mortality 
worldwide (1). Because current vaccines are typically only effective 
against the specific viral strains used for vaccination and closely related 
viruses (2), and increasing resistance reduces the effectiveness of the 
available antiviral drugs (3), an urgent need remains for innovative new 
treatments, both prophylactic and therapeutic (4). To this end, we and 
others have previously described human monoclonal antibodies (mAbs) 
that neutralize a wide spectrum of influenza A viruses by binding to 
highly conserved epitopes in the stem region of hemagglutinin (HA), the 
major viral surface glycoprotein (5–9). To date, influenza B viruses have 
received less attention, as they are largely restricted to humans and thus 
lack the large animal reservoirs that are key to the emergence of pan-
demic influenza A viruses (10). 

Although the morbidity and mortality rates attributable to influenza 
B are lower than H3N2 viruses, they are higher than H1N1 viruses (11). 
While influenza B viruses are classified as a single influenza type, two 
antigenically and genetically distinct lineages co-circulate (12), repre-
sented by the prototype viruses B/Victoria/2/1987 (Victoria lineage) and 
B/Yamagata/16/1988 (Yamagata lineage) (13). Vaccine manufacturers 
have therefore recently initiated clinical evaluation of quadrivalent vac-

cines that include strains from each 
influenza B lineage, H1N1 and H3N2 
(14). Given that influenza B viruses are 
the major cause of seasonal influenza 
epidemics every two to four years lead-
ing to substantial absenteeism, hospi-
talization, and death (11), mAbs with 
broad neutralizing activity (bnAbs) 
against influenza B viruses have signif-
icant clinical potential. 

Combinatorial display libraries, 
constructed from human B cells of 
volunteers recently vaccinated with the 
seasonal influenza vaccine (9), were 
panned using soluble recombinant HA 
from various influenza A and B virus-
es, and phages were subsequently 
screened for binding to HAs of both 
influenza B lineages (15). We recov-
ered three immunoglobulins (IgGs) 
that bound HAs from both lineages, 
CR8033 (VH3-9, Vκ3-20) and CR8071 
(VH1-18, Vλ1-47) (Fig. 1, A and B), as 
well as CR9114, a VH1-69 antibody, 
which additionally binds influenza A 
viruses from both group 1 and group 2 
(Fig. 1A and fig. S1). Importantly, 
CR8033 and CR8071 neutralized rep-
resentative viruses from either lineage 
(Fig. 1C), whereas polyclonal sheep 
sera did not (table S1). CR8033 
showed hemagglutination-inhibition 
(HI) activity against the Yamagata 
lineage, but not against the Victoria 
lineage. Thus, while CR8033 likely 
neutralizes Yamagata strains by block-
ing receptor binding, it appears to neu-
tralize Victoria strains by another 
mechanism. In contrast, CR8071 
showed no HI activity against either 
lineage. Although CR9114 neutralized 
all influenza A viruses tested, it did not 
show in vitro neutralizing activity 

against influenza B viruses at the tested concentrations (Fig. 1C). Since 
recent work indicated that the protective efficacy of broadly neutralizing 
influenza antibody FI6 is substantially dependent on antibody effector 
functions (5), we evaluated the protective efficacy of all three mAbs 
against B/Florida/4/2006 (Yamagata) and B/Malaysia/2506/2004 (Victo-
ria) infections in mice. 
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Identification of broadly neutralizing antibodies against influenza A viruses has 
raised hopes for the development of monoclonal antibody–based immunotherapy 
and “universal” vaccines for influenza. However, a significant part of the annual flu 
burden is caused by two cocirculating, antigenically distinct lineages of influenza B 
viruses. Here, we report human monoclonal antibodies, CR8033, CR8071, and 
CR9114, that protect mice against lethal challenge from both lineages. Antibodies 
CR8033 and CR8071 recognize distinct conserved epitopes in the head region of the 
influenza B hemagglutinin (HA), whereas CR9114 binds a conserved epitope in the 
HA stem and protects against lethal challenge with influenza A and B viruses. These 
antibodies may inform on development of monoclonal antibody–based treatments 
and a universal flu vaccine for all influenza A and B viruses. 

Doses as low as 0.6 mg/kg and 0.2 mg/kg of CR8033 fully protected 
mice from lethality upon challenge with B/Florida/4/2006 and 
B/Malaysia/2506/2004, respectively, and lower doses still resulted in 
increased survival and reduced weight loss (Fig. 2A and fig. S2A). Alt-
hough CR8071 is somewhat less potent in vivo than CR8033 (Fig. 2B 
and fig. S2B), the difference is less marked than expected based on the 
microneutralization assay, indicating that in vitro neutralization is not 
fully predictive of in vivo potency. Despite the apparent lack of in vitro 
neutralizing activity, 15 mg/kg and ≥5 mg/kg of CR9114 fully protected 
mice from lethality following challenge with B/Florida/4/2006 and 
B/Malaysia/2506/2004, respectively, with significant protection against 
the latter virus with 1.7 and 0.6 mg/kg (Fig. 2C and fig. S2C). Similarly, 
1.7 and 5 mg/kg CR9114 protected mice against challenge with lethal 
doses of influenza A H1N1 and H3N2 viruses, respectively (Fig. 2D and 

/ http://www.sciencemag.org/content/early/recent / 9 August 2012 / Page 1/ 10.1126/science.1222908 
 

 o
n 

A
ug

us
t 9

, 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


fig. S2D). 
CR8033, CR8071, and CR9114 do not compete with each other for 

HA binding, suggesting they recognize different epitopes (fig. S3). 
However, CR9114 competes with CR6261 and CR8020, (fig. S4), sug-
gesting it binds an HA stem epitope. To identify their epitopes and un-
derstand how they achieve broad neutralization, we obtained x-ray and 
EM structures for CR8033, CR8071 and CR9114 (Fig. 3) in complex 
with representative HAs of influenza A and B viruses. 

We generated a 3D reconstruction of the HA ectodomain of 
B/Florida/4/2006 in complex with Fab CR8033 (Fig. 3B) using negative 
stain electron microscopy (EM). Crystal structures of Fab CR8033 at 1.9 
Å and influenza B/Brisbane/60/2008 HA ectodomain at 3.45 Å provided 
atomic models for fitting into the EM reconstruction (fig. S5 and tables 
S2 to S5). Three CR8033 Fabs bind the HA trimer on an epitope over-
lapping the receptor binding pocket and surrounding antigenic sites. The 
EM model suggests that almost all contacts are made by VH using all 
three HCDRs loops and framework 3 (fig. S6) (16). While the receptor 
binding pocket of influenza B HA is well conserved, variability in sur-
rounding residues (fig. S7) may account for differences in CR8033 bind-
ing and neutralization of the two influenza B lineages. 

EM reconstructions were also performed on Fab CR8071 in complex 
with both B/Florida/4/2006 (Yamagata) and B/Malaysia/2506/2004 HAs 
(Victoria) (Fig. 3B and fig. S8D), along with crystal structures of Fab 
CR8071 with a B/Florida/4/2006 HA1 construct (2.7 Å) and CR8059, of 
which CR8071 is a stabilized variant (see SOM), with 
B/Brisbane/60/2008 HA (5.65 Å) (fig. S8A-C). CR8071 binds the ves-
tigial esterase domain at the base of the HA head distant from the recep-
tor-binding site and in an orientation (Fig. 3B) consistent with the 
observed lack of HI. The epitope is highly conserved in influenza B HA 
with 17 of 19 residues >98% conserved. 

Crystal structures were determined for Fab CR9114 with HAs from a 
highly pathogenic H5N1 virus (A/Vietnam/1203/2004 (H5N1); 
Viet04/H5, 1.7 Å) (Fig. 3C), as well as H3 (5.25 Å) and H7 (5.75 Å) 
(fig. S9). EM studies further illustrated the CR9114 cross reactivity with 
influenza A H1, H3, H7, and H9 subtypes, and influenza B (Fig. 3E). 
CR9114 binds the HA stem (fig. S10), recognizing an epitope nearly 
identical to that of CR6261 (17), using the same HCDR loops (1, 2, 3) 
and FR3 with no light-chain contacts. Recently, human antibody FI6 was 
identified that broadly neutralizes influenza A viruses by targeting ap-
proximately the same epitope (5). However, FI6 uses a different V-gene 
(VH3-30) and its light chain (fig. S11), and is rotated by ~90° compared 
to VH1-69 antibodies CR6261 and CR9114. Thus, FI6 represents an 
alternative solution to cross-group neutralization of influenza A, but not 
influenza B viruses. 

The CR9114 epitope is highly conserved in essentially all influenza 
A subtypes and influenza B (Fig. 3D, tables S6 and S7). At least three 
obstacles must be overcome for an antibody to bind to a similar epitope 
across influenza A and B. First, most group 1 HAs have HA2 Thr49, 
whereas most group 2 HAs have a larger Asn (fig. S10 and table S6) (6, 
18) that can be accommodated by CR9114. Second, polymorphisms at 
HA2 position 111, His (group 1), Thr/Ala (group 2) or Glu (influenza B) 
result in subtly different conformations of HA2 Trp21, which affect its 
ability to make favorable interactions with hot spot residue HCDR2 
Phe54 in CR6261 (fig. S10) (19). The more favorable orientation and 
approach of Phe54 and apparent plasticity of the CR9114 combining site 
(20) (fig. S12) may allow CR9114 to make high affinity interactions 
(including a hydrogen bond) with the various conformations of Trp21 in 
group 1 and group 2 HAs. Third, the predominant conformation of a 
conserved glycan at HA1 Asn38 in H3, H7, H10, and H15 in group 2, 
and at HA1 Asn332 in influenza B, would obscure the epitope surface 
(figs. S10 and S11) (21–23). Thus, this glycan and Asn side chain must 
be able to adopt a permissive alternative conformation as observed in the 
CR9114-H3 crystal structure (24). Thus, displacement of the HA1 38 

glycan appears essential for CR9114 binding to several influenza A sub-
types, and a similarly positioned glycan at HA1 332 in influenza B must 
also be avoided (fig. S11). Such glycan flexibility at HA1 38 was also 
observed in the FI6 structure with H3 HA but, in this case, the glycan at 
332 in flu B may be more difficult to avoid (25). 

CR9114 and CR6261 both utilize the VH1-69 germline Vgene and 
have relatively small numbers of somatic mutations compared to other 
bnAbs (26, 27). However, only five mutations are shared (fig. S13) and, 
hence, they are not simple variants of one another. Aside from the 
heavy-chain only binding, both antibodies are fairly conventional, in 
contrast to many bnAbs to other viruses, such as HIV-1, that have unu-
sual features, such as extensive hypermutation, long indels in one or 
more CDRs, tyrosine sulfation, or domain swapping (26, 27). Conse-
quently, antibodies like CR9114 are likely to be readily generated and 
may be present in the repertoire of many individuals, suggesting that an 
appropriate vaccination strategy may be able to selectively amplify such 
cross-reactive clones and trigger a bnAb response (4, 28, 29). 

Despite CR8033 and CR8071 binding to the more variable HA 
globular head, but consistent with the apparent high level of epitope 
conservation, escape variants could only be generated after extensive 
passaging. For B/Florida/4/2006 virus, no CR8033 escape variants were 
generated in 20 passages, while 15 passages were required to generate 
Lys38Glu and Tyr40His mutants with reduced CR8071 susceptibility. 
For B/Malaysia/2506/2004 virus, 15 passages were required to generate 
a Pro161Gln reduced susceptibility mutant for CR8033, while 20 rounds 
of passaging did not result in any CR8071 escape variants. Lys38 and 
Pro161 are highly conserved (99.4% and 100% respectively) in all 494 
(unique) full-length influenza B HA sequences in the NCBI database. 
Although Tyr40 is only 29.1% conserved, all other strains have His40, 
including B/Harbin/7/94, B/Malaysia/2506/04 and B/Brisbane/60/08, 
which are effectively neutralized by CR8071 (Fig. 1C). In contrast, the 
Lys38Glu mutation has not been observed in any influenza B isolates. 
Because CR9114 does not neutralize influenza B viruses in vitro, no 
influenza B escape variants could be generated (30). 

The identification of conserved neutralizing epitopes in the influenza 
B HA globular head parallels the recent identification of such epitopes in 
influenza A viruses (31, 32) and establishes that both the HA stem and 
head regions contains broadly protective epitopes. Whereas the stem-
binding CR9114 blocks the HA pH-induced conformational changes 
associated with membrane fusion (Fig. 4, A and B; and figs. S14 and 
S15) (33), this mechanism is not applicable to CR8033 and CR8071 that 
bind the head region (Fig. 4A). Indeed, whereas CR8033 has HI activity 
and blocks viral infection when pre-incubated with B/Florida/4/2006 
virus (Fig. 1C), it had no such effect on B/Malaysia/2506/2004 virus 
(Fig. 4B). Furthermore, CR8071 did not prevent infection of cells by 
either virus (Fig. 4B) (34). 

Interestingly, these antibodies appear to prevent propagation of vi-
ruses without preventing entry and genome replication (Figs. 1C and 
4B). Thus, we assessed the effect of CR8033 and CR8071 on formation 
of viral progeny from infected cells. Whereas HA was readily detected 
in both lysates and supernatants of MDCK cell cultures that were first 
infected and subsequently incubated with a non-binding control antibody 
or CR9114, no HA could be detected in the supernatants upon incuba-
tion with CR8033 or CR8071, despite abundant HA in the lysate (Fig. 
4C). The effects of CR8033 and CR8071 then resemble that of neuram-
inidase (NA) inhibitor zanamivir, which interferes with release of proge-
ny virions from infected cells (35). Indeed, the dense aggregation of 
virions on the surface of infected cells, particularly in the presence of 
antibody CR8033, closely resembles that observed in zanamivir-treated 
cells as examined by SEM (Fig. 4D). 

The identification and characterization of monoclonal antibodies 
with broad neutralizing activity against influenza B viruses, together 
with previously described broadly neutralizing antibodies against group 
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1 and group 2 influenza A viruses (6, 7, 9) brings a universal therapy a 
step closer, and may serve as guides for design of broadly protective 
vaccines. In particular, a vaccine that elicits antibodies targeting the 
CR9114 epitope may provide the ultimate goal of protection against all 
influenza A and influenza B viruses. 
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Fig. 1. In vitro binding and neutralizing activity of CR8033, CR8071, and 
CR9114. (A) Relative binding potency (Kd) for binding of CR8033, CR8071, 
and CR9114 to a wide range of influenza A and B hemagglutinins (HAs) as 
determined using a fluorescence-based plate assay. The HAs were selected to 
cover the two lineages and main phylogenetic branches of influenza B, as well 
as the major subtypes of influenza A that have infected humans. Values are 
from one representative of three independent experiments and reported in nM. 
(B) Dendrogram of all non-redundant, full-length influenza B HA sequences in 
the National Center for Biotechnology Information Flu database (36). The 
positions in the phylogenetic tree of the influenza B HAs used in these studies 
are indicated. (C) Fifty percent inhibitory concentrations (IC50, μg/ml) of 
CR8033, CR8071, and CR9114 against representative strains from the 
Yamagata and Victoria lineages of influenza B and the H1N1 and H3N2 
subtypes of influenza A as determined by means of microneutralization (MN) 
and hemagglutination inhibition (HI) assays. Values are representative of three 
independent experiments and reported in micrograms per milliliter. n.a. = not 
applicable. 
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Fig. 2. In vivo efficacy of CR8033, CR8071 and CR9114. Efficacy of CR8033 (A), 
CR8071 (B), and CR9114 (C) against lethal challenge with mouse-adapted 
B/Florida/4/2006 (left panels), or B/Malaysia/2506/2004 (right panels) virus, and 
(D) of CR9114 against mouse-adapted A/Puerto Rico/8/1934 (left panel), or 
A/Hong Kong/1/1968 virus (right panel). Survival curves of mice (10 animals per 
group in A, B and C, 8 per group in D) treated with the indicated doses of 
CR8033, CR8071, or CR9114 are shown, or vehicle control 24 hours before 
challenge by intranasal inoculation (at day 0). Asterisks indicate significant 
improvements in survival proportions at day 21, compared to vehicle control (P < 
0.05). 
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Fig. 3. CR8033, CR8071, and CR9114 bind to distinct epitopes on influenza B HA and conservation of the CR9114 neutralizing 
epitope on influenza A and B. (A) Surface representation illustrating the neutralizing epitopes on HA B/Brisbane/60/2008 of 
CR8033, CR8071 and CR9114 as determined from the EM structures in (B) and the crystal structures of CR9114 in Fig. 3C and 
CR8071 in fig. S8. The EM density maps allow unambiguous fits of known structures with good correspondence with the 
CR9114 epitope defined by both x-ray crystallography and EM, despite differences in resolution. The structure is colored by 
conservation of contact residues across all available influenza B virus sequences. Red = over 98% conserved; orange = 75-98% 
conserved; yellow = 50-75% conserved (B) Negative stain EM reconstructions (gray mesh) of CR8033 (left), CR8071 (middle) 
and CR9114 (right) in complex with B/Florida/4/2006. Side (top) and overhead (bottom) views show the fits of the individual 
crystal structures of the Fabs and flu B HA to the EM density. (C) Crystal structure of CR9114 in complex with H5 HA (group 1). 
One HA/Fab protomer of the trimeric complex is colored with HA1 in magenta, HA2 in cyan, Fab heavy chain in green, Fab light 
chain in yellow, and N-linked glycans in colored balls representing their atom type. The other two protomers are colored in gray. 
(D) Conservation of CR9114 contact residues across all 16 influenza A subtypes (left) and between influenza A and B viruses 
(right). Red, orange, yellow correspond to coloring used in Fig. 3A with green = 25-50% conserved. Carbohydrates positions are 
represented by a cross colored in black (group 1), cyan (group 2), green (group 1+2), orange (influenza B), and blue (influenza A 
and B). Residue numbers are shown with HA1 in magenta and HA2 in black. (E) Illustration of cross-reactivity of CR9114 for 
influenza A H1, H3, H7, and H9 subtypes using negative stain EM (from left to right). Single particle reconstructions of negatively 
stained CR9114 Fabs bound to HA trimers from four major subtypes of influenza A that have infected humans (SC1918/H1, 
group 1; HK68/H3, group 2; Neth03/H7, group 2; and Wisc66/H9, group 1). The HA trimers are colored in different shades of 
blue. The Fabs of CR9114 (three per trimer) are colored in purple (the third Fab, at the back, has been omitted for clarity). 
Broadly neutralizing CR9114 binds in a structurally similar manner to the stem region across all subtypes, groups and classes of 
HA. Additional density in the HA not accounted for by the protein likely corresponds to glycosylation. 
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Fig. 4. Neutralization mechanisms of CR8033, CR8071 and CR9114. (A) CR9114 protects HAs of group 1 (A/South 
Carolina/1/1918 (H1N1) and A/Vietnam/1203/2004 (H5N1)) and group 2 (A/Netherlands/219/2003 (H7N7) and A/Hong 
Kong/1/1968 (H3N2)) influenza A viruses from the pH-induced protease sensitivity associated with membrane fusion. 
Exposure to low pH converts the HAs to the post-fusion state, rendering them sensitive to trypsin digestion (lane 1 vs. 3), but 
CR9114 prevents this conversion, retaining the HA in the protease-resistant, pre-fusion form (lane 2). CR8033 and CR8070 
do not prevent this conversion at low pH (right panel) (N=4). (B) Expression of influenza NP in monolayers of MDCK cells 16-
18 hours after inoculation with B/Florida/4/2006 or B/Malaysia/2506/2004 viruses that were pre-incubated with CR8033, 
CR8071, CR9114, or polyclonal sheep sera directed against B/Florida/4/2006 or B/Malaysia/2506/2004, as indicated. NP 
expression is determined by immunofluorescence. Representative images of three independent experiments are shown. (C) 
Immunoblots of uncleaved HA (HA0) detected in the lysate and supernatant of MDCK cells infected with B/Florida/4/2006 
virus and subsequently (from 3 to 20 hours post infection) incubated with different concentrations of antibodies or zanamivir as 
indicated. HA0 was detected using rabbit serum against B/Jiangsu/10/03 (Yamagata lineage). Concentrations are in μg/ml 
and μM for antibodies and zanamivir, respectively. Results from one representative of two independent experiments are 
shown. (D) SEM images of the surface of MDCK cells infected with B/Florida/4/2006 virus and subsequently (from 3 to 20 
hours post infection) incubated with CR8071 (10 μg/ml), CR8033 (2.5 μg/ml), or zanamivir (60 μM). Representative images of 
three independent experiments are shown. Scale bar 1 μm. 
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