李向东
中国医学科学院阜外医院 心血管内科
Importance:Tongxinluo, a traditional Chinese medicine compound, has shown promise in in vitro, animal, and small human studies for myocardial infarction, but has not been rigorously evaluated in large randomized clinical trials.Objective:To investigate whether Tongxinluo could improve clinical outcomes in patients with ST-segment elevation myocardial infarction (STEMI).Design, Setting, and Participants:Randomized, double-blind, placebo-controlled clinical trial was conducted among patients with STEMI within 24 hours of symptom onset from 124 hospitals in China. Patients were enrolled from May 2019 to December 2020; the last date of follow-up was December 15, 2021.Interventions:Patients were randomized 1:1 to receive either Tongxinluo or placebo orally for 12 months (a loading dose of 2.08 g after randomization, followed by the maintenance dose of 1.04 g, 3 times a day), in addition to STEMI guideline-directed treatments.Main Outcomes and Measures:The primary end point was 30-day major adverse cardiac and cerebrovascular events (MACCEs), a composite of cardiac death, myocardial reinfarction, emergent coronary revascularization, and stroke. Follow-up for MACCEs occurred every 3 months to 1 year.Results:Among 3797 patients who were randomized, 3777 (Tongxinluo: 1889 and placebo: 1888; mean age, 61 years; 76.9% male) were included in the primary analysis. Thirty-day MACCEs occurred in 64 patients (3.4%) in the Tongxinluo group vs 99 patients (5.2%) in the control group (relative risk [RR], 0.64 [95% CI, 0.47 to 0.88]; risk difference [RD], -1.8% [95% CI, -3.2% to -0.6%]). Individual components of 30-day MACCEs, including cardiac death (56 [3.0%] vs 80 [4.2%]; RR, 0.70 [95% CI, 0.50 to 0.99]; RD, -1.2% [95% CI, -2.5% to -0.1%]), were also significantly lower in the Tongxinluo group than the placebo group. By 1 year, the Tongxinluo group continued to have lower rates of MACCEs (100 [5.3%] vs 157 [8.3%]; HR, 0.64 [95% CI, 0.49 to 0.82]; RD, -3.0% [95% CI, -4.6% to -1.4%]) and cardiac death (85 [4.5%] vs 116 [6.1%]; HR, 0.73 [95% CI, 0.55 to 0.97]; RD, -1.6% [95% CI, -3.1% to -0.2%]). There were no significant differences in other secondary end points including 30-day stroke; major bleeding at 30 days and 1 year; 1-year all-cause mortality; and in-stent thrombosis (<24 hours; 1-30 days; 1-12 months). More adverse drug reactions occurred in the Tongxinluo group than the placebo group (40 [2.1%] vs 21 [1.1%]; P = .02), mainly driven by gastrointestinal symptoms.Conclusions and Relevance:In patients with STEMI, the Chinese patent medicine Tongxinluo, as an adjunctive therapy in addition to STEMI guideline-directed treatments, significantly improved both 30-day and 1-year clinical outcomes. Further research is needed to determine the mechanism of action of Tongxinluo in STEMI.Trial Registration:ClinicalTrials.gov Identifier: NCT03792035.
JAMA 2023
BACKGROUND:Bone marrow cells (BMCs), especially mesenchymal stem cells (MSCs), have shown attractive application prospects in acute myocardial infarction (AMI). However, the weak efficacy becomes their main limitation in clinical translation. Based on the anti-inflammation and anti-apoptosis effects of a Chinese medicine-Tongxinluo (TXL), we aimed to explore the effects of TXL-pretreated MSCs (MSCsTXL) in enhancing cardiac repair and further investigated the underlying mechanism.METHODS:MSCsTXL or MSCs and the derived exosomes (MSCsTXL-exo or MSCs-exo) were collected and injected into the infarct zone of rat hearts. In vivo, the anti-apoptotic and anti-inflammation effects, and cardiac functional and histological recovery were evaluated. In vitro, the apoptosis was evaluated by western blotting and flow cytometry. miRNA sequencing was utilized to identify the significant differentially expressed miRNAs between MSCsTXL-exo and MSCs-exo, and the miRNA mimics and inhibitors were applied to explore the specific mechanism.RESULTS:Compared to MSCs, MSCsTXL enhanced cardiac repair with reduced cardiomyocytes apoptosis and inflammation at the early stage of AMI and significantly improved left ventricular ejection fraction (LVEF) with reduced infarct size in an exosome-dependent way. Similarly, MSCsTXL-exo exerted superior therapeutic effects in anti-apoptosis and anti-inflammation, as well as improving LVEF and reducing infarct size compared to MSCs-exo. Further exosomal miRNA analysis demonstrated that miR-146a-5p was the candidate effector of the superior effects of MSCsTXL-exo. Besides, miR-146a-5p targeted and decreased IRAK1, which inhibited the nuclear translocation of NF-κB p65 thus protecting H9C2 cells from hypoxia injury.CONCLUSIONS:This study suggested that MSCsTXL markedly facilitated cardiac repair via a new mechanism of the exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway, which has great potential for clinical translation.
Stem cell research & therapy 2022
AIMS:Interleukin (IL)-5 mediates the development of eosinophils (EOS) that are essential for tissue post-injury repair. It remains unknown whether IL-5 plays a role in heart repair after myocardial infarction (MI). This study aims to test whether IL-5-induced EOS population promotes the healing and repair process post-MI and to reveal the underlying mechanisms.METHODS AND RESULTS:MI was induced by permanent ligation of the left anterior descending coronary artery in wild-type C57BL/6 mice. Western blot and real-time polymerase chain reaction revealed elevated expression of IL-5 in the heart at 5 days post-MI. Immunohistostaining indicated that IL-5 was secreted mainly from macrophages and CD127+ cells in the setting of experimental MI. External supply of recombinant mouse IL-5 (20 min, 1 day, and 2 days after MI surgery) reduced the infarct size and increased ejection fraction and angiogenesis in the border zone. A significant expansion of EOS was detected in both the peripheral blood and infarcted myocardium after IL-5 administration. Pharmacological depletion of EOS by TRFK5 pretreatment muted the beneficial effects of IL-5 in MI mice. Mechanistic studies demonstrated that IL-5 increased the accumulation of CD206+ macrophages in infarcted myocardium at 7 days post-MI. In vitro co-culture experiments showed that EOS shifted bone marrow-derived macrophage polarization towards the CD206+ phenotypes. This activity of EOS was abolished by IL-4 neutralizing antibody, but not IL-10 or IL-13 neutralization. Western blot analyses demonstrated that EOS promoted the macrophage downstream signal transducer and activator of transcription 6 (STAT6) phosphorylation.CONCLUSION:IL-5 facilitates the recovery of cardiac dysfunction post-MI by promoting EOS accumulation and subsequent CD206+ macrophage polarization via the IL-4/STAT6 axis.
Cardiovascular research 2022
BACKGROUND:Bone marrow-derived mesenchymal stem cells (MSCs), which possess immunomodulatory characteristic, are promising candidates for the treatment of acute myocardial infarction (AMI). However, the low retention and survival rate of MSCs in the ischemic heart limit their therapeutic efficacy. Strategies either modifying MSCs or alleviating the inflammatory environment, which facilitates the recruitment and survival of the engrafted MSCs, may solve the problem. Thus, we aimed to explore the therapeutic efficacy of sequential transplantation of exosomes and combinatorial pretreated MSCs in the treatment of AMI.METHODS:Exosomes derived from MSCs were delivered to infarcted hearts through intramyocardial injection followed by the intravenous infusion of differentially pretreated MSCs on Day 3 post-AMI. Enzyme linked immunosorbent assay (ELISA) was performed to evaluate the inflammation level as well as the SDF-1 levels in the infarcted border zone of the heart. Echocardiography and histological analysis were performed to assess cardiac function, infarct size, collagen area and angiogenesis.RESULTS:Sequential transplantation of exosomes and the combinatorial pretreated MSCs significantly facilitated cardiac repair compared to AMI rats treated with exosomes alone. Notably, compared to the other three methods of cotransplantation, combinatorial pretreatment with hypoxia and Tongxinluo (TXL) markedly enhanced the CXCR4 level of MSCs and promoted recruitment, which resulted in better cardiac function, smaller infarct size and enhanced angiogenesis. We further demonstrated that exosomes effectively reduced apoptosis in MSCs in vitro.CONCLUSION:Sequential delivery of exosomes and pretreated MSCs facilitated cardiac repair post-AMI, and combined pretreatment with hypoxia and TXL better enhanced the cardioprotective effects. This method provides new insight into the clinical translation of stem cell-based therapy for AMI.
Stem cell research & therapy 2022
The secreted factors from cardiac microvascular endothelial cells (CMECs) regulate the physiological activity of adjacent tissues and could be modulated by myocardial ischemia/reperfusion injury (MIRI). How this paracrine function of CMECs is regulated by MIRI and resveratrol remains to be elucidated. CMECs pretreated with/ without resveratrol were subjected to hypoxia/reoxygenation (H/R). Apoptosis was measured by flowcytometry. Protein antibody arrays were performed to find the alteration of cytokine secreted by CMECs. The Gene Ontology analysis was applied to interpret the function of modulated factors. We revealed resveratrol inhibited apoptosis of CMECs dose-dependently after H/R and reached its peak effect at the concentration of 100 μM. 29 factors were significantly changed by H/R, and resveratrol at 100 μM changed 98 types of factors compared with the H/R group. Among these factors, eight were increased by H/R and then were decreased by resveratrol. Eleven were attenuated by H/R and further decreased by resveratrol. Insulin-like growth factor binding protein-1 was upregulated by H/R and it was further increased by resveratrol. The altered factors were involved in cell proliferation, cell growth, cell motility, chemotaxis, angiogenesis and vasculogenesis. The study suggests that resveratrol inhibits the apoptosis and modulates the paracrine function of CMECs under ischemia/reperfusion condition.
Die Pharmazie 2022
BACKGROUND:The impact of fibrinolysis-first strategy on outcomes of patients with ST-segment-elevation myocardial infarction (STEMI) during the COVID-19 pandemic was unknown.METHODS:Data from STEMI patients presenting to Fuwai Hospital from January 23 to April 30, 2020 were compared with those during the equivalent period in 2019. The primary end-point was net adverse clinical events (NACE; a composite of death, non-fatal myocardial reinfarction, stroke, emergency revascularization, and bleeding over BARC type 3). The secondary outcome was a composite of recurrent ischaemia, cardiogenic shock, and exacerbated heart failure.RESULTS:The final analysis included 164 acute STEMI patients from 2020 and 240 from 2019. Eighteen patients (20.2% of those with indications) received fibrinolysis therapy in 2020 with a median door-to-needle time of 60.0 (43.5, 92.0) minutes. Patients in 2020 underwent primary PCI less frequently than their counterparts (14 [14.2%] vs. 144 [86.8%] in 2019, P < 0.001), and had a longer median door-to-balloon time (175 [121,213] minutes vs. 115 [83, 160] minutes in 2019, P = 0.009). Patients were more likely to undergo elective PCI (86 [52.4%] vs. 28 [11.6%] in 2019, P < 0.001). The in-hospital NACE was similar between 2020 and 2019 (14 [8.5%] vs. 25 [10.4%], P = 0.530), while more patients developed a secondary outcome in 2020 (20 [12.2%] vs. 12 [5.0%] in 2019, P = 0.009).CONCLUSIONS:The fibrinolysis-first strategy during the COVID-19 pandemic was associated with a lower rate of timely coronary reperfusion and increased rates of recurrent ischaemia, cardiogenic shock, and exacerbated heart failure. However, the in-hospital NACE remained similar to that in 2019.
International journal of cardiology 2021
OBJECTIVE:This study was to investigate the mechanism of inflammatory pathology modification induced by ox-LDL in endothelial cells.METHODOLOGY:In this study, we firstly investigated the efflux of cholesterol of endothelial cells under the treatment of ox-LDL, and cell proliferation, ROS production, cell apoptosis was measured. Further, proteins of ASK1, NLRP3 inflammasomes and endoplasmic reticulum stress response were detected. Afterwards, ASK1 inhibitor (GS-4997) or endoplasmic reticulum stress (ERS) inhibitor (4-PBA) was used to measure the performance of endothelial cells.RESULTS:In this study, endothelial cells were treated with ox-LDLs alone or in combination with a GS-4997 or 4-PBA. Results showed that ox-LDLs attenuated the efflux of cholesterol from endothelial cells in a dose-dependent manner. Ox-LDLs inhibited the proliferation of endothelial cells, and induced their apoptosis and production of reactive oxygen species (ROS). Additionally, ox-LDLs upregulated the levels of phosphorylated ASK1, ERS-related proteins (chop, p-PERK, GRP78, and p-IRE-1), and inflammation-associated proteins (NLRP3, IL-1β, and caspase 1) in endothelial cells. Moreover, we proved that GS-4997 could partly reverse ox-LDL-mediated cell proliferation, apoptosis, ROS production, and inflammation in endothelial cells, and increase cholesterol efflux. We also found that 4-PBA could attenuate the effects of ox-LDLs on endothelial cell cholesterol efflux, proliferation, apoptosis, ROS production, and inflammation.CONCLUSION:Our results suggest that cholesterol efflux from endothelial cells is reduced by ox-LDLs, and these reductions in cholesterol efflux are accompanied by increased NLRP3 inflammasome signaling, ASK1 and higher levels of endoplasmic reticulum stress. Our results suggest this axis as potential targets for treating atherosclerosis.
Drug design, development and therapy 2020
Acute ST-segment elevation myocardial infarction (STEMI) remains a serious life-threatening event. Despite coronary revascularization, patients might still suffer from poor outcomes caused by myocardial no-reflow and ischemic/reperfusion injury. Tongxinluo (TXL), a traditional Chinese medicine, has been preliminarily demonstrated to reduce myocardial no-reflow and ischemic/reperfusion injury. We further hypothesize that TXL treatment is also effective in reducing clinical end points for the patients with STEMI. METHODS AND RESULTS: The CTS-AMI trial is a prospective, randomized, double-blind, placebo-controlled, multicenter clinical study in China. An estimated 3,796 eligible patients with STEMI from about 120 centers are randomized 1:1 ratio to TXL or placebo groups. All enrolled patients are orally administrated a loading dose of 8 capsules of TXL or placebo together with dual antiplatelet agents on admission followed by 4 capsules 3 times a day until 12 months. The primary end point is 30-day major adverse cardiovascular and cerebrovascular events, a composite of cardiac death, myocardial reinfarction, emergency coronary revascularization, and stroke. Secondary end points include each component of the primary end point, 1-year major adverse cardiovascular and cerebrovascular events, and other efficacy and safety parameters. CONCLUSIONS: Results of CTS-AMI trial will determine the clinical efficacy and safety of traditional Chinese medicine TXL capsule in the treatment of STEMI patients in the reperfusion era.
American heart journal 2020
BACKGROUND:Traditional Chinese medicine Tongxinluo (TXL) has been widely used to treat coronary artery disease in China, since it could reduce myocardial infarct size and ischemia/reperfusion injury in both non-diabetic and diabetic conditions. It has been shown that TXL could regulate peroxisome proliferator activated receptor-α (PPAR-α), a positive modulator of angiopoietin-like 4 (Angptl4), in diabetic rats. Endothelial junction substructure components, such as VE-cadherin, are involved in the protection of reperfusion injury. Thus, we hypothesized cell-intrinsic and endothelial-specific Angptl4 mediated the protection of TXL on endothelial barrier under high glucose condition against ischemia/reperfusion-injury via PPAR-α pathway.METHODS:Incubated with high glucose medium, the human cardiac microvascular endothelial cells (HCMECs) were then exposed to oxygen-glucose-serum deprivation (2 hours) and restoration (2 hours) stimulation, with or without TXL, insulin, or rhAngptl4 pretreatment.RESULTS:TXL, insulin, and rhAngptl4 had similar protective effects on the endothelial barrier. TXL treatment reversed the endothelial barrier breakdown in HCMECs significantly as identified by decreasing endothelial permeability, upregulating the expression of JAM-A, VE-cadherin, and integrin-α5 and increasing the membrane location of VE-cadherin and integrin-α5, and these effects of TXL were as effective as insulin and rhAngptl4. However, Angptl4 knock-down with small interfering RNA (siRNA) interference and PPAR-α inhibitor MK886 partially abrogated these beneficial effects of TXL. Western blotting also revealed that similar with insulin, TXL upregulated the expression of Angptl4 in HCMECs, which could be inhibited by Angptl4 siRNA or MK886 exposure. TXL treatment increased PPAR-α activity, which could be diminished by MK886 but not by Angptl4 siRNA.CONCLUSION:These data suggest cell-intrinsic and endothelial-specific Angptl4 mediates the protection of TXL against endothelial barrier breakdown during oxygen-glucose-serum deprivation and restoration under high glucose condition partly via the PPAR-α/Angptl4 pathway.
Medicine 2020
Rationale: The crosstalk between cardiac microvascular endothelial cells (CMECs) and cardiomyocytes (CMs) has emerged as a key component in the development of, and protection against, cardiac diseases. For example, activation of endothelial nitric oxide synthase (eNOS) in CMECs, by therapeutic strategies such as ischemic preconditioning, plays a critical role in the protection against myocardial ischemia/reperfusion (I/R) injury. However, much less is known about the signals produced by CMs that are able to regulate CMEC biology. Here we uncovered one such mechanism using Tongxinluo (TXL), a traditional Chinese medicine, that alleviates myocardial ischemia/reperfusion (I/R) injury by activating CMEC eNOS. The aim of our study is to identify the signals produced by CMs that can regulate CMEC biology during I/R. Methods: Ex vivo, in vivo, and in vitro settings of ischemia-reperfusion were used in our study, with the protective signaling pathways activated in CMECs identified using genetic inhibition (p70s6k1 siRNA, miR-145-5p mimics, etc.), chemical inhibitors (the eNOS inhibitor, L-NNA, and the small extracellular vesicles (sEVs) inhibitor, GW4869) and Western blot analyses. TritonX-100 at a dose of 0.125% was utilized to inactivate the eNOS activity in endothelium to investigate the role of CMEC-derived eNOS in TXL-induced cardioprotection. Results: We found that while CMEC-derived eNOS activity was required for the cardioprotection of TXL, activation of eNOS in CMECs by TXL did not occur directly. Instead, eNOS activation in CMECs required a crosstalk between CMs and CMECs through the uptake of CM-derived sEVs. We further demonstrate that TXL induced CM-sEVs contain increased levels of Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (Linc-ROR). Upon uptake into CMECs, linc-ROR downregulates its target miR-145-5p leading to activation of the eNOS pathway by facilitating the expression of p70s6k1 in these cells. The activation of CMEC-derived eNOS works to increase survival in both the CMECs and the CMs themselves. Conclusions: These data uncover a mechanism by which the crosstalk between CMs and CMECs leads to the increased survival of the heart after I/R injury and point to a new therapeutic target for the blunting of myocardial I/R injury.
Theranostics 2020