冯杰
中国医学科学院阜外医院
BACKGROUND:The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated.METHODS:We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively.RESULTS:Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin β1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair.CONCLUSIONS:Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.
Circulation 2023
Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.
Cellular and molecular life sciences : CMLS 2023
Circulation 2022
Primary cardiomyocytes (CMs) are invaluable materials used to study in vitro cardiac physiology and pathophysiology. However, there is still a lack of comprehensive, systematic and comparative studies on methods for isolation of primary CMs from postnatal hearts. Here, we aimed to compare and optimize protocols for the isolation of CMs from embryonic to adult stages. We found that the trypsin digestion method was suitable for embryonic mouse CM isolation. The Gentle MACS method yielded high-quality CMs from neonatal hearts (postnatal day 1-day 3, P1-P3). The Langendorff-free perfusion method was applicable for isolation of CMs from mice older than P3. P14 and P56 CMs could also be isolated by the Langendorff perfusion system. The transcriptional profiles and cellular function of the isolated CMs were respectively confirmed by RNA sequencing and Angiotensin II treatment, suggesting the feasibility and effectiveness of the isolation methods. Overall, this study supplies a series of detailed and optimized protocols to isolate CMs at different developmental stages, which provides support for the study of the mechanisms, pathology, and pharmacology of cardiovascular diseases.
Journal of molecular and cellular cardiology 2022
In an injured neonatal myocardium, macrophages facilitate cardiomyocyte proliferation and angiogenesis and promote heart regeneration. The present study reveals that transplantation of neonatal cardiac macrophages recruited by injury promotes adult heart regeneration after myocardial infarction with improvement of cardiac function and cardiomyocyte proliferation. The results indicate that neonatal cardiac macrophage transplantation could be a promising strategy for cardiac injury treatment. Here, we provide the technical details, including the isolation of neonatal cardiac macrophages from apical resection-injured neonatal mouse hearts, the transplantation of macrophages into myocardial-infarcted adult mice, and the estimation of heart regeneration after a macrophage graft.
Journal of visualized experiments : JoVE 2021
Circulation 2021
BACKGROUND:A key cause of the high mortality of cardiovascular diseases is the cardiomyocyte inability to renew after cardiac injury. As a promising strategy to supplement functional myocytes for cardiac repair, there is a pressing need to understand the cellular and molecular mechanisms of heart regeneration.METHODS:Seven genetic mouse lines were used: global OSM (oncostatin M) knockout, monocyte-/macrophage-specific OSM deletion, cardiomyocyte-specific lines, including OSM receptor deletion, gp130 (glycoprotein 130) deletion, gp130 activation, and Yap (yes-associated protein) ablation with gp130 activation mice. A series of molecular signaling experiments, including RNA sequencing, immunostaining, coimmunoprecipitation, and imaging flow cytometry, were conducted. Two models of cardiac injury, apical resection and myocardial infarction operation, were performed in neonatal, juvenile, and adult mice. Heart regeneration and cardiac function were evaluated by Masson staining and echocardiography, respectively. Gene recombinant adenovirus-associated virus was constructed and infected myocardial-infarcted mice as a gene therapy.RESULTS:OSM was identified by RNA sequencing as a key upstream regulator of cardiomyocyte proliferation during neonatal heart regeneration in mice. Cardiomyocyte proliferation and heart regeneration were suspended in neonatal mice after cardiac injury when OSM was conditionally knockout in macrophages. The cardiomyocyte-specific deficiency of the OSM receptor heterodimers, OSM receptor and gp130, individually in cardiomyocytes reduced myocyte proliferation and neonatal heart regeneration. Conditional activation of gp130 in cardiomyocytes promoted cardiomyocyte proliferation and heart regeneration in juvenile and adult mice. Using RNA sequencing and functional screening, we found that Src mediated gp130-triggered cardiomyocyte proliferation by activating Yap (yes-associated protein) with Y357 phosphorylation independently of the Hippo pathway. Cardiomyocyte-specific deletion of Yap in Myh6-gp130ACT mice blocked the effect of gp130 activation-induced heart regeneration in juvenile mice. Gene therapy with adenovirus-associated virus encoding constitutively activated gp130 promoted cardiomyocyte proliferation and heart regeneration in adult mice after myocardial infarction.CONCLUSIONS:Macrophage recruitment is essential for heart regeneration through the secretion of OSM, which promotes cardiomyocyte proliferation. As the coreceptor of OSM, gp130 activation is sufficient to promote cardiomyocyte proliferation by activating Yap through Src during heart regeneration. gp130 is a potential therapeutic target to improve heart regeneration after cardiac injury.
Circulation 2020
The neonatal heart completely regenerates after apical resection (AR), providing a desirable research model to study the mechanism of cardiac regeneration and cardiomyocyte proliferation. However, AR-induced neonatal heart regenerative phenomenon is controversial due to the variation of operative details in different laboratories. Here, we provide an optimized AR operation procedure with stable regeneration and high survival rate by achieving heart exposure, normalizing myocardium cut-offs, and reducing operation duration. We also established a whole-heart-slice approach to estimate the myocardial regeneration after the AR operation, which ensures no false-negative/positive results. The combination of the optimized AR operation and the whole-heart-slice analysis provides a stable system to study neonatal heart regeneration and cardiomyocyte proliferation in situ.
Journal of cellular and molecular medicine 2020
Myeloid-derived growth factor (Mydgf), a paracrine protein secreted by bone marrow-derived monocytes and macrophages, was found to protect against cardiac injury following myocardial infarction (MI) in adult mice. We speculated that Mydgf might improve heart function via myocardial regeneration, which is essential for discovering the target to reverse heart failure. Methods: Two genetic mouse lines were used: global Mydgf knockout (Mydgf-KO) and Mydgf-EGFP mice. Two models of cardiac injury, apical resection was performed in neonatal and MI was performed in adult mice. Quantitative reverse transcription-polymerase chain reaction, western blot and flow cytometry were performed to study the protein expression. Immunofluorescence was performed to detect the proliferation of cardiomyocytes. Heart regeneration and cardiac function were evaluated by Masson's staining and echocardiography, respectively. RNA sequencing was employed to identify the key involved in Mydgf-induced cardiomyocyte proliferation. Mydgf recombinant protein injection was performed as a therapy for cardiac repair post MI in adult mice. Results: Mydgf expression could be significantly induced in neonatal mouse hearts after cardiac injury. Unexpectedly, we found that Mydgf was predominantly expressed by endothelial cells rather than macrophages in injured neonatal hearts. Mydgf deficiency impeded neonatal heart regeneration and injury-induced cardiomyocyte proliferation. Mydgf recombinant protein promoted primary mouse cardiomyocyte proliferation. Employing RNA sequencing and functional verification, we demonstrated that c-Myc/FoxM1 pathway mediated Mydgf-induced cardiomyocyte expansion. Mydgf recombinant protein improved cardiac function in adult mice after MI injury with inducing cardiomyocyte proliferation. Conclusion: Mydgf promotes cardiomyocyte proliferation by activating c-Myc/FoxM1 pathway and improves heart regeneration both in neonatal and adult mice after cardiac injury, providing a potential target to reverse cardiac remodeling and heart failure.
Theranostics 2020
Long noncoding RNAs (lncRNAs) play important roles in the regulation of genes involved in cell proliferation. We have previously sought to more globally understand the differences of lncRNA expression between human fetal heart and adult heart to identify some functional lncRNAs which involve in the process of heart repair. We found that a highly conserved long noncoding RNA NR_045363 was mainly expressed in cardiomyocytes and rarely in non-cardiomyocytes. NR_045363 overexpression in 7-day-old mice heart could improve cardiac function and stimulate cardiomyocyte proliferation after myocardial infarction. Furthermore, NR_045363 knockdown inhibited proliferation of primary embryonic cardiomyocytes, while NR_045363 overexpression enhanced DNA synthesis and cytokinesis in neonatal cardiomyocytes in vitro. Mechanistic analysis revealed that NR_045363 promoted cardiomyocyte proliferation through interaction with miR-216a, which regulated the JAK2-STAT3 pathway. Our results showed that NR_045363 is a potent lncRNA modulator essential for cardiomyocyte proliferation.
Journal of molecular and cellular cardiology 2019