贾六军

中国医学科学院阜外心血管病医院 动物实验中心

Developing and evaluating a chronic ischemic cardiomyopathy in swine model by rest and stress CMR.

A large animal model of chronic coronary artery disease (CAD) is crucial for the understanding the underlying pathophysiological processes of chronic CAD and consequences for cardiac structure and function. The goal of this study was to develop a chronic model of CAD in a swine model and to evaluate the changes of myocardial structure, myocardial motility, and myocardial viability during coronary stenosis. A total of 30 swine (including 24 experimental animals and 6 controls) were enrolled. The chronic ischemia model was constructed by using Ameroid constrictor in experimental group. The 24 experimental animals were further divided into 4 groups (6 animals in each group) and were sacrificed at 1, 2, 3 and 4 weeks after operation for pathological examination, respectively. Cardiac magnetic resonance (CMR) was performed preoperatively and weekly postoperatively until sacrificed both in experimental and control group. CMR cine images, rest/adenosine triphosphate (ATP) stress myocardial contrast perfusion and LGE were performed and analyzed. The rest wall thickening (WT) score was calculated from rest cine images. The MPRI (myocardial perfusion reserve index) and MPR (myocardial perfusion reserve) were calculated based on rest and stress perfusion images. Pathology staining including triphenyltetrazolium chloride, HE and picrosirus red staining were performed after swine were sacrificed and collagen volume fraction (CVF) was calculated. The time to formation of ischemic, hibernating, and infarcted myocardium was recorded. In experimental group, from 1w to 4w after surgery, the rest WT score decreased gradually from 35.2 ± 2.0%, 32.0 ± 2.9% to 30.5 ± 3.0% and finally 29.06 ± 1.78%, p < 0.001. Left ventricular ejection fraction was gradually impaired after modeling (58.9 ± 12.6%, 56.3 ± 10.1%, 55.3 ± 9.0%, 53.8 ± 9.9%, respectively). And the MPR and MPRI also decreased stepwise with extent of surgery time (MPRI dropped from 2.1 ± 0.4, 2.0 ± 0.2 to 1.8 ± 0.3 and finally 1.7 ± 0.1, p = 0.004; MPR dropped from 2.3 ± 0.4, 2.1 ± 0.2 to 1.9 ± 0.4 and finally 1.8 ± 0.1, p < 0.001). Stronger associations between MPR, MPRI and CVF were paralleled lower wall thickening scores in fibrosis-affected areas. The ischemic myocardium was first appeared in the first week after surgery (involving ten segments), hibernated myocardium was first appeared in the second week after surgery (involving seventeen segments). LGE was first appeared in eight swine in the third weeks after surgery (16 segments). At 4w after surgery, average 9.6 g scar tissue was found among 6 swine. At the same time, histological analysis established the presence of fibrosis and ongoing apoptosis in the infarcted area. In conclusion, our study provided valuable insights into the pathophysiological processes of chronic CAD and its consequences for cardiac structure and function in a large animal model through combining myocardial motion and stress perfusion.

2.1
4区

The international journal of cardiovascular imaging 2024

Red blood cell membrane-functionalized Nanofibrous tubes for small-diameter vascular grafts.

The off-the-shelf small-diameter vascular grafts (SDVGs) have inferior clinical efficacy. Red blood cell membrane (Rm) has easy availability and multiple bioactive components (such as phospholipids, proteins, and glycoproteins), which can improve the clinic's availability and patency of SDVGs. Here we developed a facile approach to preparing an Rm-functionalized poly-ε-caprolactone/poly-d-lysine (Rm@PCL/PDL) tube by co-incubation and single-step rolling. The integrity, stability, and bioactivity of Rm on Rm@PCL/PDL were evaluated. The revascularization of Rm@PCL/PDL tubes was studied by implantation in the carotid artery of rabbits. Rm@PCL/PDL can be quickly prepared and showed excellent bioactivity with good hemocompatibility and great anti-inflammatory. Rm@PCL/PDL tubes as the substitute for the carotid artery of rabbits had good patency and quick remodeling within 21 days. Rm, as a "self" biomaterial with high biosafety, provides a new and facile approach to developing personalized or universal SDVGs for the clinic, which is of great significance in cardiovascular regenerative medicine and organ chip.

14.0
1区

Biomaterials 2023

Fabrication of heparinized small diameter TPU/PCL bi-layered artificial blood vessels and in vivo assessment in a rabbit carotid artery replacement model.

Increasingly growing problems in vascular access for long-term hemodialysis lead to a considerable demand for synthetic small diameter vascular prostheses, which usually suffer from some drawbacks and are associated to high failure rates. Incorporating the concept of in situ tissue engineering (TE) into synthetic small diameter blood vessels, for example, thermoplastic poly(ether urethane) (TPU) ones, could provide an alternative approach for vascular access that profits from the advantages of excellent mechanical properties of synthetic polymer materials (early cannulation) and unique biointegration regeneration of autologous neovascular tissues (long-term fistulae). In this study, a kind of heparinized small diameter (d = 2.5 mm) TPU/poly(ε-caprolactone) (TPU/PCL-Hep) bi-layered blood vessels was electrospun with an inner layer of PCL and an outer layer of TPU. Afterward, the inner surface heparinization was conducted by coupling H2N-PEG-NH2 to the corroded PCL layer and then heparin to the attached H2N-PEG-NH2 via the EDCI/NHS chemistry. Herein a heparinized PCL inner layer could not only inhibit thrombosis, but also provide sufficient space for the neotissue regeneration via biodegradation with time. Meanwhile, a TPU outer layer could confer the vascular access the good mechanical properties, such as flexibility, viability and fitness of elasticity between the grafts and host blood vessels as evidenced by the adequate mechanical properties, such as compliance (4.43 ± 0.07%/ 100 mmHg), burst pressure (1447 ± 127 mmHg) and suture retention strength (1.26 ± 0.07 N) without blood seepage after implantation. Furthermore, a rabbit carotid aortic replacement model for 5 months was demonstrated 100% animal survival and 86% graft patency. Puncture assay also revealed the puncture resistance and self-sealing (hemostatic time < 2 min). Histological analysis highlighted neotissue regeneration, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, these results showed promising aspects of small diameter TPU/PCL-Hep bi-layered grafts for hemodialytic vascular access applications.

2区

Biomaterials advances 2022

18F-ASEM Imaging for Evaluating Atherosclerotic Plaques Linked to α7-Nicotinic Acetylcholine Receptor.

BACKGROUND:Atherosclerosis is a chronic vascular inflammatory procedure alongside with lipid efflux disorder and foam cell formation. α7-Nicotinic acetylcholine receptor (α7nAChR) is a gated-calcium transmembrane channel widely expressed in neuron and non-neuron cells, such as monocytes and macrophages, activated T cells, dendritic cells, and mast cells. 18F-ASEM is an inhibitor targeted to α7nAChR that had been successfully applied in nervous system diseases. Previous studies had highlighted that α7nAChR was related to the emergency of vulnerable atherosclerotic plaques with excess inflammation cells. Thus, 18F-ASEM could be a complementary diagnostic approach to atherosclerotic plaques.MATERIALS AND METHODS:The synthesis of ASEM precursor and 18F-labeling had been performed successfully. We had established the ApoE-/- mice atherosclerotic plaques model (fed with western diet) and New Zealand rabbits atherosclerotic models (balloon-sprained experiment and western diet). After damage of endothelial cells and primary plaque formation, 18F-ASEM imaging of atherosclerotic plaques linked to α7nAChR had been conducted. In vivo micro-PET/CT imaging of ApoE-/- mice and the control group was performed 1 h after injection of 18F-ASEM (100-150 μCi); PET/CT imaging for rabbits with atherosclerotic plaques and control ones was also performed. Meanwhile, we also conducted CT scan on the abdominal aorta of these rabbits. After that, the animals were sacrificed, and the carotid and abdominal aorta were separately taken out for circular sections. The paraffin-embedded specimens were sectioned with 5 μm thickness and stained with hematoxylin-eosin (H&E) and oil red.RESULTS:In vivo vessel binding of 18F-ASEM and α7nAChR expression in the model group with atherosclerosis plaques was significantly higher than that in the control group. PET/CT imaging successfully identified the atherosclerotic plaques in ApoE-/- mice and model rabbits, whereas no obvious signals were detected in normal mice or rabbits. Compared with 18F-FDG, 18F-ASEM had more significant effect on the early monitoring of inflammation in carotid atherosclerotic plaques of ApoE-/- mice and model rabbits. 18F-ASEM had relatively more palpable effect on the imaging of abdominal aorta with atherosclerosis in rabbits. H&E and oil red staining identified the formation of atherosclerotic plaques in model animals, which provided pathological basis for the evaluation of imaging effects.CONCLUSION:We first confirmed 18F-ASEM as radiotracer with good imaging properties for precise identification of atherosclerotic diseases.

5.7
3区

Frontiers in bioengineering and biotechnology 2021

Anticoagulant Hydrogel Tubes with Poly(ɛ-Caprolactone) Sheaths for Small-Diameter Vascular Grafts.

Small-diameter vascular grafts (inner diameter < 6 mm) are useful in treating cardiovascular diseases. The off-the-shelf small-diameter vascular grafts for clinical applications remain a great limitation owing to their thrombogenicity or intimal hyperplasia. Herein, bilayer anticoagulant hydrogel tubes with poly(ε-caprolactone) (PCL) sheaths are prepared by freeze-thawing and electrospinning, which contain nanofibrillated cellulose (NFC)/poly(vinyl alcohol) (PVA)-heparin/poly-L-lysine nanoparticles tube as an inner layer and PCL sheath as an outer layer. The structure, anticoagulant property, and biocompatibility of the inner layer are studied. The effects of thickness of the outer layer on perfusion performance and mechanical property of hydrogel tubes with PCL sheaths (PCL-NFC/PVA-NPs tubes) are investigated. The effect of compliance of PCL-NFC/PVA-NPs tubes on their blood flow is studied by numerical simulation. The tissue compatibility and the patency of PCL-NFC/PVA-NPs tubes are evaluated by implantation in subcutaneous tissue of rats and carotid artery of rabbits. PCL-NFC/PVA-NPs tubes have prominent anticoagulation, sufficient burst pressure and good compliance similar to native arteries. PCL-NFC/PVA-NPs tubes facilitate infiltration of host cells and achieve active proliferation of recruited cells, which will be a promising candidate for small-diameter vascular grafts.

10.0
2区

Advanced healthcare materials 2021

Preliminary Outcome of a Novel Edge-to-Edge Closure Device to Manage Mitral Regurgitation in Dogs.

Background: Veterinary management of mitral valve regurgitation due to mxyomatous valve disease in dogs is limited to medical treatments, which only postpones the onset of congestive heart failure or alleviates clinical symptoms. Most surgical procedures to manage this condition in humans require cardiopulmonary bypass and have a high risk of complications. Animals: Eight dogs with naturally occurring mitral valve regurgitation. Methods: Prospective observational study. All dogs were treated with a novel edge-to-edge transcatheter device named ValveClamp. The total surgical procedural time and total catheterization time were recorded. Echocardiographic variables measured pre- and post-procedure were compared using Wilcoxin-signed rank test with a P < 0.05 considered significant. Data were expressed as median and interquartile range and absolute numbers and percentages. Results: The procedural success rate was 100% and all the dogs survived without complications. The median (interquartile range) total surgical procedural time was 86.5 (76-96.2) minutes and catheterization time was 23.5 (22-33.8) minutes. Echocardiography revealed a significant reduction in mitral regurgitation severity in all dogs following the procedure based on both a reduced mitral regurgitant maximum jet area (P = 0.012) and a reduced mitral regurgitant maximum jet area to left atrial area (P = 0.018). Conclusion: The ValveClamp device is effective at reducing the severity of mitral regurgitation in dogs with naturally occurring myxomatous valve disease.

3.2
2区

Frontiers in veterinary science 2020

A Soft, Conductive External Stent Inhibits Intimal Hyperplasia in Vein Grafts by Electroporation and Mechanical Restriction.

Intimal hyperplasia (IH) in vein grafts (VGs) is a major issue in coronary artery bypass grafting (CABG) surgery. Although external stents can attenuate IH of VGs to some extent, none of the existing external stents have shown satisfactory clinical outcomes. Here we develop a flexible, biodegradable, and conductive external metal-polymer conductor stent (MPCS) that can electroporate the vessel wall and produce a protein that prevents IH. We designed the plasmid DNA encoding the tissue inhibitor of metalloproteinases-3 (TIMP-3) and lyophilized it on the inner surface of the MPCS to deliver into the adventitia and the middle layer of VGs for gene therapy. Coupled with its continuous mechanical support to prevent dilation after implanting, the MPCS can inhibit the IH of VGs significantly in the rabbit model. This proof-of-concept demonstration may aid the development of other implantable bioelectronics for electroporation gene therapy.

17.1
1区

ACS nano 2020

Preparation and in vivo evaluation of surface heparinized small diameter tissue engineered vascular scaffolds of poly(ε-caprolactone) embedded with collagen suture.

2.9
4区

Journal of biomaterials applications 2020

Structural, functional and histological features of a novel ischemic heart failure model.

There is still no satisfactory large-animal model of ischemic heart failure (IHF) with ideal survival rate and model time. The aim of this study is to explore a novel chronic IHF model in swine. 23 healthy Ba-Ma miniature pigs were included. Pigs in the experimental group underwent multiple strategic ligations on side branches of the left anterior descending (LAD) and circumflex coronary arteries. One week later, sequential intervention occlusion of the distal end of the LAD trunk was performed. In the experimental groups, LV end-diastolic (LVEDV) and end-systolic volume (LVESV) gradually increased starting at 4 weeks post operation. At 12 WPO, LVEDV increased from 45.0 ± 2.9 ml at baseline to 110.0 ± 9.8 ml and LVESV increased from 17.0 ± 1.4 ml at baseline to 42.0 ± 3.6 ml. Meanwhile, left ventricular ejection fraction significantly decreased from 73.8 ± 4.2 % at baseline to 31.0 ± 2.5%. According to histomorphometric assessment, viable cells were observed in infarction lesions, indicating the model has replicated the structural and functional features of chronic IHF.

3.1
4区

Frontiers in bioscience (Landmark edition) 2019

Preparation of Small-Diameter Tissue-Engineered Vascular Grafts Electrospun from Heparin End-Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model.

Aiming to construct small diameter (ID <6 mm) off-the-shelf tissue-engineered vascular grafts, the end-group heparinizd poly(ε-caprolactone) (PCL) is synthesized by a three-step process and then electrospun into an inner layer of double-layer vascular scaffolds (DLVSs) showing a hierarchical double distribution of nano- and microfibers. Afterward, PCL without the end-group heparinization is electrospun into an outer layer. A steady release of grafted heparin and the existence of a glycocalyx structure give the grafts anticoagulation activity and the conjugation of heparin also improves hydrophilicity and accelerates degradation of the scaffolds. The DLVSs are evaluated in six rabbits via a carotid artery interpositional model for a period of three months. All the grafts are patent until explantation, and meanwhile smooth endothelialization and fine revascularization are observed in the grafts. The composition of the outer layer of scaffolds exhibits a significant effect on the aneurysm dilation after implantation. Only one aneurysm dilation is detected at two months and no calcification is formed in the follow-up term. How to prevent aneurysms remains a challenging topic.

4.6
4区

Macromolecular bioscience 2019