耿彬
中国医学科学院阜外医院 高血压中心
OBJECTIVE:Mounting evidence has linked microbiome and metabolome to systemic autoimmunity and cardiovascular diseases (CVDs). Takayasu arteritis (TAK) is a rare disease that shares features of immune-related inflammatory diseases and CVDs, about which there is relatively limited information. This study was undertaken to characterize gut microbial dysbiosis and its crosstalk with phenotypes in TAK.METHODS:To address the discriminatory signatures, we performed shotgun sequencing of fecal metagenome across a discovery cohort (n = 97) and an independent validation cohort (n = 75) including TAK patients, healthy controls, and controls with Behçet's disease (BD). Interrogation of untargeted metabolomics and lipidomics profiling of plasma and fecal samples were also used to refine features mediating associations between microorganisms and TAK phenotypes.RESULTS:A combined model of bacterial species, including unclassified Escherichia, Veillonella parvula, Streptococcus parasanguinis, Dorea formicigenerans, Bifidobacterium adolescentis, Lachnospiraceae bacterium 7 1 58FAA, Escherichia coli, Streptococcus salivarius, Klebsiella pneumoniae, Bifidobacterium longum, and Lachnospiraceae Bacterium 5 1 63FAA, distinguished TAK patients from controls with areas under the curve (AUCs) of 87.8%, 85.9%, 81.1%, and 71.1% in training, test, and validation sets including healthy or BD controls, respectively. Diagnostic species were directly or indirectly (via metabolites or lipids) correlated with TAK phenotypes of vascular involvement, inflammation, discharge medication, and prognosis. External validation against publicly metagenomic studies (n = 184) on hypertension, atrial fibrillation, and healthy controls, confirmed the diagnostic accuracy of the model for TAK.CONCLUSION:This study first identifies the discriminatory gut microbes in TAK. Dysbiotic microbes are also linked to TAK phenotypes directly or indirectly via metabolic and lipid modules. Further explorations of the microbiome-metagenome interface in TAK subtype prediction and pathogenesis are suggested.
Arthritis & rheumatology (Hoboken, N.J.) 2023
G protein-coupled receptors (GPCRs) are the largest family of druggable targets, and their biological functions depend on different ligands and intracellular interactomes. Some microRNAs (miRNAs) bind as ligands to RNA-sensitive toll-like receptor 7 to regulate the inflammatory response, thereby contributing to the pathogenesis of cancer or neurodegeneration. It is unknown whether miRNAs bind to angiotensin II (Ang II) type 2 receptor (AGTR2), a critical protective GPCR in cardiovascular diseases, as ligands or intracellular interactomes. Here, screening for miRNAs that bind to AGTR2, we identified and confirmed that the pre-miRNA hsa-let-7a-2 non-competitively binds to the intracellular third loop of AGTR2. Functionally, intracellular hsa-let-7a-2 overexpression suppressed the Ang II-induced AGTR2 effects such as cAMP lowering, RhoA inhibition, and activation of Src homology 2 domain-containing protein-tyrosine phosphatase 1, whereas hsa-let-7a-2 knockdown enhanced these effects. Consistently, overexpressed hsa-let-7a-2 restrained the AGTR2-induced antiproliferation, antimigration, and proapoptosis of cells, and vasodilation of mesenteric arteries. Our findings demonstrated that hsa-let-7a-2 is a novel intracellular partner of AGTR2 that negatively regulates AGTR2-activated signals.
International journal of biological sciences 2022
Atherosclerosis is the greatest contributor to cardiovascular events and is involved in the majority of deaths worldwide. Plaque rapture or erosion precipitates life-threatening thrombi, resulting in the obstruction blood flow to the heart (acute coronary syndrome), brain (ischemic stroke) or low extremities (peripheral vascular diseases). Among these events, major causation dues to the plaque rupture. Although the initiation, procession, and precise time of controlling plaque rupture are unclear, foam cell formation and apoptosis, cell death, extracellular matrix components, protease expression and activity, local inflammation, intraplaque hemorrhage, and calcification contribute to the plaque instability. These alterations tightly associate with the function regulation of intraplaque various cell populations. Hydrogen sulfide (H2S) is gasotransmitter derived from methionine metabolism and exerts a protective role in the genesis of atherosclerosis. Recent progress also showed H2S mediated the plaque stability. In this review, we discuss the progress of endogenous H2S modulation on functions of vascular smooth muscle cells, monocytes/macrophages, and T cells, and the molecular mechanism in plaque stability.
Antioxidants (Basel, Switzerland) 2022
Hydrostatic pressure, stretch, and shear are major biomechanical forces of vessels and play critical roles in genesis and development of hypertension. Our previous work demonstrated that high hydrostatic pressure (HHP) promoted vascular smooth muscle cells (VSMCs) two novel subsets: inflammatory and endothelial function inhibitory VSMCs and then exacerbated VSMC dysfunction. However, the underlying mechanism remains unknown. Here, we first identified that aortic GPX4 (a core regulator of ferroptosis) significantly downregulated association with VSMC novel phenotype elevation in SHR rats and hypertension patients. In primary VSMCs, HHP (200 mmHg) increased iron accumulation, ROS production, and lipid peroxidation compared with normal pressure (100 mmHg). Consistently, the ferroptosis-related gene (COX-2, TFRC, ACSL4, and NOX-1) expression was also upregulated. The ferroptosis inhibitor ferrostatin-1 (Fer-1) administration blocked HHP-induced VSMC inflammatory (CXCL2 expression) and endothelial function inhibitory (AKR1C2 expression) phenotyping switch association with elevation in the GPX4 expression, reduction in the reactive oxygen species (ROS), and lipid peroxidation production. In contrast, the ferroptosis inducer RLS3 increased HHP-induced CXCL2 and AKR1C2 expressions. These data indicate HHP-triggering ferroptosis contributes to VSMC inflammatory and endothelial function inhibitory phenotyping switch. In mechanism, HHP reduced the VSMC GSH content and cystathionine gamma-lyase (CSE)/hydrogen sulfide (H2S)-an essential system for GSH generation. Supplementation of the H2S donor-NaHS increased the VSMC GSH level, alleviated iron deposit, ROS and lipid peroxidation production. NaHS administration rescues both HHP- and RLS3-induced ferroptosis. Collectively, HHP downregulated VSMC CSE/H2S triggering GSH level reduction, resulting in ferroptosis, which contributed to the genesis of VSMC inflammation and endothelial function inhibitory phenotypes.
Frontiers in cell and developmental biology 2022
BACKGROUND AND AIMS:Hydrogen sulfide (H2 S) plays a protective role in NAFLD. However, whether cystathionine γ lyase (CSE), a dominant H2 S generating enzyme in hepatocytes, has a role in the pathogenesis of NAFLD is currently unclear.APPROACH AND RESULTS:We showed that CSE protein expression is dramatically downregulated, especially in fibrotic areas, in livers from patients with NAFLD. In high-fat diet (HFD)-induced NAFLD mice or an oleic acid-induced hepatocyte model, the CSE/H2 S pathway is also downregulated. To illustrate a regulatory role for CSE in NAFLD, we generated a hepatocyte-specific CSE knockout mouse (CSELKO ). Feeding an HFD to CSELKO mice, they showed more hepatic lipid deposition with increased activity of the fatty acid de novo synthesis pathway, increased hepatic insulin resistance, and higher hepatic gluconeogenic ability compared to CSELoxp control mice. By contrast, H2 S donor treatment attenuated these phenotypes. Furthermore, the protection conferred by H2 S was blocked by farnesoid X receptor (FXR) knockdown. Consistently, serum deoxycholic acid and lithocholic acid (FXR antagonists) were increased, and tauro-β-muricholic acid (FXR activation elevated) was reduced in CSELKO . CSE/H2 S promoted a post-translation modification (sulfhydration) of FXR at Cys138/141 sites, thereby enhancing its activity to modulate expression of target genes related to lipid and glucose metabolism, inflammation, and fibrosis. Sulfhydration proteomics in patients' livers supported the CSE/H2 S modulation noted in the CSELKO mice.CONCLUSIONS:FXR sulfhydration is a post-translational modification affected by hepatic endogenous CSE/H2 S that may promote FXR activity and attenuate NAFLD. Hepatic CSE deficiency promotes development of nonalcoholic steatohepatitis. The interaction between H2 S and FXR may be amenable to therapeutic drug treatment in NAFLD.
Hepatology (Baltimore, Md.) 2022
Vascular smooth muscle cells (VSMCs) contribute to plaque stability. VSMCs are also a major source of CTH (cystathionine gamma-lyase)-hydrogen sulfide (H2S), a protective gasotransmitter in atherosclerosis. However, the role of VSMC endogenous CTH-H2S in pathogenesis of plaque stability and the mechanism are unknown. In human carotid plaques, CTH expression in ACTA2+ cells was dramatically downregulated in lesion areas in comparison to non-lesion areas. Intraplaque CTH expression was positively correlated with collagen content, whereas there was a negative correlation with CD68+ and necrotic core area, resulting in a rigorous correlation with vulnerability index (r = -0.9033). Deletion of Cth in VSMCs exacerbated plaque vulnerability, and were associated with VSMC autophagy decline, all of which were rescued by H2S donor. In ox-LDL treated VSMCs, cth deletion reduced collagen and heightened apoptosis association with autophagy reduction, and vice versa. For the mechanism, CTH-H2S mediated VSMC autophagosome formation, autolysosome formation and lysosome function, in part by activation of TFEB, a master regulator for autophagy. Interference with TFEB blocked CTH-H2S effects on VSMCs collagen and apoptosis. Next, we demonstrated that CTH-H2S sulfhydrated TFEB at Cys212 site, facilitating its nuclear translocation, and then promoting transcription of its target genes such as ATG9A, LAPTM5 or LDLRAP1. Conclusively, CTH-H2S increases VSMC autophagy by sulfhydration and activation of TFEB, promotes collagen secretion and inhibits apoptosis, thereby attenuating atherogenesis and plaque vulnerability. CTH-H2S may act as a warning biomarker for vulnerable plaque.Abbreviations ATG9A: autophagy related 9A; CTH: cystathionine gamma-lyase; CQ: chloroquine; HASMCs: human aortic smooth muscle cells; H2S: hydrogen sulfide; LAMP1: lysosomal associated membrane protein 1; LAPTM5: lysosomal protein transmembrane 5; NaHS: sodium hydrosulfide hydrate; ox-LDL: oxidized-low density lipoprotein; PPG: DL- propagylglycine; TFEB: transcription factor EB; 3-MA: 3-methyladenine; VSMCs: vascular smooth muscle cells.
Autophagy 2022
Although some co-risk factors and hemodynamic alterations are involved in hypertension progression, their direct biomechanical effects are unclear. Here, we constructed a high-hydrostatic-pressure cell-culture system to imitate constant hypertension and identified novel molecular classifications of human aortic smooth muscle cells (HASMCs) by single-cell transcriptome analysis. Under 100-mmHg (analogous to healthy human blood pressure) or 200-mmHg (analogous to hypertension) hydrostatic pressure for 48 h, HASMCs showed six distinct vascular SMC (VSMC) clusters according to differential gene expression and gene ontology enrichment analysis. Especially, two novel HASMC subsets were identified, named the inflammatory subset, with CXCL2, CXCL3 and CCL2 as markers, and the endothelial-function inhibitory subset, with AKR1C2, AKR1C3, SERPINF1 as markers. The inflammatory subset promoted CXCL2&3 and CCL2 chemokine expression and secretion, triggering monocyte migration; the endothelial-function inhibitory subset secreted SERPINF1 and accelerated prostaglandin F2α generation to inhibit angiogenesis. The expression of the two VSMC subsets was greatly increased in arterial media from patients with hypertension and experimental animal models of hypertension. Collectively, we identified high hydrostatic pressure directly driving VSMCs into two new subsets, promoting or exacerbating endothelial dysfunction, thereby contributing to the pathogenesis of cardiovascular diseases.
Science China. Life sciences 2021
Vascular smooth muscle cell (VSMC) phenotypic switch plays an essential role in the pathogenesis of hypertension. Mitochondrial dynamics, such as mitochondrial fission, can also contribute to VSMC phenotypic switch. Whether mitochondrial fission act as a novel target for anti-hypertensive drug development remains unknown. In the present study, we confirmed that angiotensin II (AngII) rapidly and continuously induced mitochondrial fission in VSMCs. We also detected the phosphorylation status of dynamin-related protein-1 (Drp1), a key protein involved in mitochondrial fission, at Ser616 site; and observed Drp1 mitochondrial translocation in VSMCs or arteries of AngII-induced hypertensive mice. The Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1) dramatically reversed AngII-induced Drp1 phosphorylation, mitochondrial fission, and reactive oxidative species generation. Treatment with Mdivi-1 (20 mg/kg/every other day) significantly attenuated AngII-induced hypertension (22 mmHg), arterial remodeling, and cardiac hypertrophy, in part by preventing VSMC phenotypic switch. In addition, Mdivi-1 treatment was not associated with liver or renal functional injury. Collectively, these results indicate that Mdivi-1 inhibited mitochondrial fission, recovered mitochondrial activity, and prevented AngII-induced VSMC phenotypic switch, resulting in reduced hypertension.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2021
AIMS:Post-fracture calcium and phosphorus excretion is greater than influx, which might be caused by stress. Glucocorticoid is known to enhance calcium and phosphorous excretion, and hydrogen sulfide (H2S) has been shown to exert inhibitory effects on glucocorticoid. Therefore, this study explored whether H2S could inhibit calcium and phosphorus loss after fracture by regulating glucocorticoid and/or its receptor.MAIN METHODS:The following properties were analyzed in rats with femur fractures: serum and urinary calcium and phosphorus (by colorimetry); bone turnover markers alkaline phosphatase, serum type 1 collagen amino terminal peptide, type 1 procollagen carboxy terminal peptide, and anti-tartaric acid phosphatase (by ELISA); factors related to calcium-phosphorus metabolism including glucocorticoid, parathyroid hormone, calcitonin, fibroblast growth factor 23, and 1,25(OH)2D3 (by ELISA); and sulfhydration of glucocorticoid receptor α in the kidney (by immunoprecipitation linked biotin-switch assay), after supplementing with mifepristone, the H2S donor GYY4137 or H2S generating enzyme inhibitors aminooxyacetic acid and propargylglycine.KEY FINDINGS:Serum H2S decreased and glucocorticoid secretion increased in rats post-fracture. The glucocorticoid receptor inhibitor mifepristone partly blunted calcium and phosphorus loss. Furthermore, supplementation with GYY4137 reduced glucocorticoid secretion; inhibited glucocorticoid receptor α activity by sulfhydration; downregulated vitamin D 1α-hydroxylase expression; and upregulated 24-hydroxylase, calbindin-D28k, and sodium phosphate cotransporter 2a expression in the kidney; thereby inhibiting calcium and phosphorus loss induced by fracture. Moreover, inhibiting endogenous H2S generation showed opposite effects.SIGNIFICANCE:Our findings suggest that H2S antagonized calcium and phosphorus loss after fracture by reducing glucocorticoid secretion and inhibiting glucocorticoid receptor α activity by sulfhydration.
Life sciences 2021
Hyperhomocysteinaemia (HHcy)-impaired endothelial dysfunction including endoplasmic reticulum (ER) stress plays a crucial role in atherogenesis. Hydrogen sulphide (H2 S), a metabolic production of Hcy and gasotransmitter, exhibits preventing cardiovascular damages induced by HHcy by reducing ER stress, but the underlying mechanism is unclear. Here, we made an atherosclerosis with HHcy mice model by ApoE knockout mice and feeding Pagien diet and drinking L-methionine water. H2 S donors NaHS and GYY4137 treatment lowered plaque area and ER stress in this model. Protein disulphide isomerase (PDI), a modulation protein folding key enzyme, was up-regulated in plaque and reduced by H2 S treatment. In cultured human aortic endothelial cells, Hcy dose and time dependently elevated PDI expression, but inhibited its activity, and which were rescued by H2 S. H2 S and its endogenous generation key enzyme-cystathionine γ lyase induced a new post-translational modification-sulfhydration of PDI. Sulfhydrated PDI enhanced its activity, and two cysteine-terminal CXXC domain of PDI was identified by site mutation. HHcy lowered PDI sulfhydration association ER stress, and H2 S rescued it but this effect was blocked by cysteine site mutation. Conclusively, we demonstrated that H2 S sulfhydrated PDI and enhanced its activity, reducing HHcy-induced endothelial ER stress to attenuate atherosclerosis development.
Journal of cellular and molecular medicine 2021