李巨波
中国医学科学院阜外医院 动物实验中心
AIM:Patients with diabetes mellitus have poor prognosis after myocardial ischemic injury. However, the mechanism is unclear and there are no related therapies. We aimed to identify regulators of diabetic myocardial ischemic injury.METHODS AND RESULTS:Mass spectrometry-based, non-targeted metabolomic approach was used to profile coronary sinus blood from diabetic and non-diabetic Bama-mini pigs at 0.5-h post coronary artery ligation. Six metabolites had a |log2 (Fold Change)|> 1.3. Among them, the most changed is arachidonic acid (AA), levels of which were 32 times lower in diabetic pigs than in non-diabetic pigs. The AA-derived products, PGI2 and 6-keto-PGF1α, were also significantly reduced. AA treatment of cultured cardiomyocytes protected against cell death by 30% at 48 h of high glucose and oxygen deprivation, which coincided with increased mitophagic activity (as indicated by increased LC3II/LC3I, decreased p62 and increased parkin & PINK1), improved mitochondrial renewal (upregulation of Drp1 and FIS1), reduced ROS generation and increased ATP production. These cardioprotective effects were abolished by PINK1(a crucial mitophagy protein) knockdown or the autophagy inhibitor 3-Methyladenine. The protective effect of AA was also inhibited by indomethacin and Cay10441, a prostacyclin receptor antagonist. Furthermore, diabetic Sprague Dawley rats were subjected to coronary ligation for 40 min and AA treatment (10 mg/day per animal gavaged) decreased myocardial infarct size, cell apoptosis index, inflammatory cytokines and improved heart function. Scanning electron microscopy showed more intact mitochondria in the border zone of infarcted myocardium in AA treated rats. Lastly, diabetic patients after myocardial infarction had lower plasma levels of AA and 6-keto-PGF1α and reduced cardiac ejection fraction, compared with non-diabetic patients after myocardial infarction. Plasma AA level was inversely correlated with fasting blood glucose.CONCLUSIONS:AA protects against diabetic ischemic myocardial damage by promoting mitochondrial autophagy and renewal, which is related to AA derived PGI2 signaling. AA may represent a new strategy to treat diabetic myocardial ischemic injury.
Cardiovascular diabetology 2024
OBJECTIVE:This study aimed to explore whether treatment with the glucagon-like peptide-1 (GLP-1) analog liraglutide reduces intimal hyperplasia after coronary stent implantation via regulation of glycemic variability, the NLRP3 inflammasome, and IL-10 in diabetic swine.METHODS:Fifteen pigs were divided into a diabetes mellitus (DM) group (n = 6), a DM + liraglutide treatment group (L group) (n = 6) and a sham group (n = 3). A total of 24 everolimus-eluting stents were implanted in the left anterior descending and right coronary arteries at 3 weeks. A novel continuous glucose monitoring system (GMS) was used for 2 weeks. The means and standard deviations (SDs) were measured and calculated by the GMS. At 22 weeks, the lumen area (LA), neointimal thickness (NIT), neointimal area (NIA), and percent area stenosis (%AS) were analyzed by optical coherence tomography. Plasma tumor necrosis factor-α, interleukin-6, and interleukin-10 were assayed by ELISA. The intima protein expression levels of NLRP3, interleukin-1β, interleukin-18 and interleukin-10 were examined using Western blot analysis. Histology was used to evaluate the healing response. In an in vitro study, THP-1 cells were divided into control, high glucose (HG), HG + liraglutide, and HG + liraglutide + Exe(9-39) (a GLP-1 receptor inhibitor) groups.RESULTS:The L group had a lower SD, NIT, NIA, and %AS; a larger LA; reduced inflammation and injury scores; lower expression levels of tumor necrosis factor-α, interleukin-6, NLRP3, interleukin-1β, and interleukin-18; and higher expression of interleukin-10 compared with those of the DM group (p < 0.05). In the in vitro study, similar results were obtained in the HG + liraglutide group, and Exe(9-39) abolished the effect of liraglutide (p < 0.05).CONCLUSIONS:Liraglutide treatment reduces intimal hyperplasia after stent implantation via regulation of glycemic variability, the NLRP3 inflammasome, and IL-10 in diabetic pigs in a GLP-1 receptor-dependent manner. Reducing the inflammation induced by glycemic variability may be one of the cardioprotective mechanisms of liraglutide.
Frontiers in pharmacology 2020
BACKGROUND:The objective of this study was to investigate the effects of glycaemic variability (GV) on intimal hyperplasia and plaque stability after coronary stenting via autophagy-mediated G3BP1/NLRP3 inflammasome signalling.METHODS:In the clinical study, between July 2017 and December 2017, 95 patients with acute myocardial infarction (AMI) and diabetes mellitus (DM) comorbidity received stent implantation. The patients were followed up for 2 years after discharge. The patients were divided into a low-GV (n=61) and high-GV (n=34) group, and the incidence of recurrent AMI was measured. In the animal study, thirteen pigs were divided into a sham (n=3), low-GV DM (n=5) and high-GV DM group (n=5). Intima samples were analysed by optical coherence tomography 22 weeks after coronary stenting. Becn1, LC3B, p62, G3BP1 and NLRP3 protein levels in the intima were examined by western blot. In vitro experiments with THP-1 cells were also conducted.RESULTS:In the high-GV group, patients exhibited a higher recurrent AMI, greater neointimal thickness, increased p62 and NLRP3 expression, and decreased Becn1, LC3B and G3BP1 expression compared with the low-GV group (P<0.05). The effects of high GV could be abolished by rapamycin but were aggravated by 3-methyladenine.CONCLUSIONS:GV might impact the intimal hyperplasia and plaque stability via autophagy-mediated G3BP1/NLRP3 inflammasome signalling. GV and the autophagy-mediated G3BP1/NLRP3 inflammasome may be promising targets for the treatment of coronary heart disease.
Annals of translational medicine 2020