高硕

中国医学科学院阜外医院 国家重点实验室

A Flow Cytometry-based Assay for Measuring Mitochondrial Membrane Potential in Cardiac Myocytes After Hypoxia/Reoxygenation.

Timely and efficient reperfusion of the occluded coronary artery is the best strategy for decreasing myocardial infarct size in patients with a ST-segment elevated myocardial infarction. However, reperfusion per se can result in further cardiomyocyte death, a phenomenon known as reperfusion injury. The opening of the mitochondrial permeability transition pore (mPTP), with the decrease of the mitochondrial membrane potential (MMP), or mitochondrial depolarization, is universally recognized as the final step of reperfusion injury and is responsible for mitochondrial and cardiomyocyte death. JC-1 is a lipophilic cationic dye that accumulates in mitochondria depending on the value of MMP. The higher the MMP is, the more JC-1 accumulates in the mitochondria. The increasing amounts of JC-1 in mitochondria can be reflected by a fluorescence emission shift from green (~530 nm) to red (~590 nm). Therefore, the reduction of the red/green fluorescence intensity ratio can indicate the depolarization of mitochondria. Here, we take advantage of JC-1 to measure MMP, or the opening of mPTP in human cardiac myocytes after hypoxia/reoxygenation, detected by flow cytometry.

1.2
4区

Journal of visualized experiments : JoVE 2018

Multiple gene mutations, not the type of mutation, are the modifier of left ventricle hypertrophy in patients with hypertrophic cardiomyopathy.

Genotype-phenotype correlation of hypertrophic cardiomyopathy (HCM) has been challenging because of the genetic and clinical heterogeneity. To determine the mutation profile of Chinese patients with HCM and to correlate genotypes with phenotypes, we performed a systematic mutation screening of the eight most commonly mutated genes encoding sarcomere proteins in 200 unrelated Chinese adult patients using direct DNA sequencing. A total of 98 mutations were identified in 102 mutation carriers. The frequency of mutations in MYH7, MYBPC3, TNNT2 and TNNI3 was 26.0, 18.0, 4.0 and 3.5 % respectively. Among the 200 genotyped HCM patients, 83 harbored a single mutation, and 19 (9.5 %) harbored multiple mutations. The number of mutations was positively correlated with the maximum wall thickness. We found that neither particular gene nor specific mutation was correlated to clinical phenotype. In summary, the frequency of multiple mutations was greater in Chinese HCM patients than in the Caucasian population. Multiple mutations in sarcomere protein may be a risk factor for left ventricular wall thickness.

2.8
4区

Molecular biology reports 2013