刘力
中国医学科学院阜外医院 心血管疾病国家重点实验室
Background/Objective:The gut microbiota plays a pivotal role in psychological health, but the mechanistic perspective between gut microbiome and mental health remains poorly understood.Method:The present case-controlled study recruited 30 unimprisoned subjects and 31 inmates that had been detained in jail for no more than a month. The mental health status, gut microbiota and blood NH3, H2S, 5-hydroxy trptamine and dopamine levels were measured.Results:Compared with unimprisoned controls, the fresh inmates exhibited significantly higher scores on anxiety and depression. Both phylogenetic structure and functional genes of the gut microbiota markedly shifted in inmates. Inmates was more Bacteroides-dominated, while unimprisoned subjects were more Prevotella-dominated. Short-chain fatty acids (SCFAs)-producing genera were largely decreased in inmates and were negatively related to mental disorder scores, while Bacteroidetes and Proteobacteria were positive to anxiety and depression scores. Simultaneously, the inmates possessed reduced genes that participate in amino acids, carbohydrates and vitamin cofactors metabolism, but enriched genes that involved in the neurotransmitter-producing Shikimate pathway. Correlation analysis revealed that Anaerotruncus and Prevotella were negative to depression score, and Enterococcus was negative to anxiety score.Conclusions:Our results revealed potential link between gut microbiota and mental health, leading further support to the microbiota-gut-brain axis theory.
International journal of clinical and health psychology : IJCHP 2022
Cardiocyte apoptosis plays an important role in the pathogenesis of heart diseases. The mechanism is unclear. It is reported that prolactin (PRL) is involved in cardiac disorders. This study aims to investigate the role of PRL in mediating the psychological stress-induced fibrofatty cell differentiation in the heart. In this study, BALB/c mice were treated with a 30-day restraint stress. The heart tissue was processed by paraffin embedding and hematoxylin and eosin. The expression of Sca1 in NIH3T3 cells was assessed by cell culture, flow cytometry and Western blotting. The results showed that chronic stress induced fibrofatty cells in the mouse heart and high serum PRL levels. The induction of fibrofatty cell was mimicked by administration with recombinant PRL. The stress also induced the expression of Sca1 in the mouse heart. Exposure of NIH3T3 cells (a fibroblast cell line) to PRL in the culture enhanced the expression of stem cell antigen-1 (Sca1), phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expression of adipocyte-related protein molecules, including adiponectin, fatty acid binding protein (aP2), peroxisome proliferator activated receptor-g (PPARg) and CCAAT/enhancer binding protein (C/EBP)α, in the cells. We conclude that psychological stress-derived PRL induces fibroblasts to differentiate into fibrofatty cells in the heart.
American journal of translational research 2016
Cardiac hypertrophy is frequently caused by pressure overload (i.e., high blood pressure or hypertension) and can lead to heart failure. The major objective of the present study was to investigate the proteomic changes in response to the development of left ventricular hypertrophy (LVH) induced by abdominal aortic banding (AB) and its prevention by antihypertensive treatment with angiotensin II receptor blocker (ARB) telmisartan. One week after AB and Sham surgery, rats were assigned into three groups: SHAM-control, aortic banding without treatment (AB-Ctrl) and aortic banding with telmisartan treatment (AB-Telmi; 5mg/kg/day for 8 weeks). Echocardiography, hemodynamics, and pathology were performed to assess LVH. Left ventricular myocardium was sampled. The analysis of proteomic proteins from myocardium was performed by two-dimensional gel electrophoresis and MALDI-TOF-MS. In AB-Ctrl, heart rate, systolic arterial blood pressure, diastolic blood pressure, left ventricular end systolic pressure, interventricular septal thickness at diastole, posterior wall thickness in diastole, heart weight (HW) and HW/body weight (BW) were increased, indicating that both hypertension and LVH developed. Telmisartan prevented hypertension and LVH. Concurrently, among numerous proteins, there were 17 that were differentially expressed among hypertrophic hearts, normal hearts, and the hearts where hypertrophic response was suppressed by ARB treatment. Primarily, proteins involved in cell structure, metabolism, stress and signal transduction exhibited up-regulations in LVH, providing cellular and molecular mechanism for hypertrophic development. These changes were prevented or greatly attenuated by telmisartan regimen. Interestingly, antioxidative-related heat shock protein 2 was detected neither in SHAM-Ctrl nor in AB-Ctrl, but in AB-Telmi. LVH is accompanied by series changes of protein expression. Both LVH and proteomic changes can be prevented by blockade of renin-angiotensin system with telmisartan. These protein alterations may constitute mechanistic pathways leading to hypertrophy development and experimental targets for novel therapeutic strategy.
Journal of physiology and biochemistry 2010