马晓妍

中国医学科学院阜外医院 放射科

Diagnostic Value of Delayed Contrast-Enhanced Cardiac Computed Tomography for Detecting Left Atrial Appendage Thrombus in Patients With Atrial Fibrillation.

Objective:Delayed enhancement cardiac CT is a reliable tool for the diagnosis of left atrial appendage thrombus but limited for scanning heterogeneity. We aimed to explore the improvement of the 1 and 3-min delay phase at the diagnostic level to detect left atrial appendage thrombus, in order to set up a reasonable CT scanning scheme.Materials and Methods:A total of 6,524 patients were continuously retrieved from January 2015 to September 2020 retrospectively. The patients had undergone Transesophageal echocardiography (TEE) and cardiac CT with complete period include the arterial enhancement phase, 1 and 3-min delay phase, TEE were used as the reference standard. The final study included 329 patients. Three experienced radiologists independently assessed each phase of the cardiac CT images for thrombus diagnosis. We explored the improvement of the diagnostic ability of different delayed contrast-enhanced phases for left atrial appendage thrombus detection. Multiple logistic regression analysis were used for further high-risk stratification to avoid an additional 1-min delayed scan.Results:In total, 29 thrombosis were detected at TEE. For all cardiac CT phases, sensitivity and negative predictive were 100%. The specificity were 0.54, 0.93, and 1.00, respectively; The positive predictive values (PPV) were 0.17, 0.57, and 1.00, respectively; Area under curve (AUC) were 0.75, 0.95, and 0.98, respectively. High risk factors that cannot be clearly diagnosed with 1-min delay phase included reduced cardiac function, increased CHA2DS2-VAScscore and left atrial enlargement. Compared with the arterial enhanced phase, increased radiation doses in the 1 and 3-min delay phases were 1.7 ± 1.3 msv and 1.5 ± 0.8 msv (mean ± standard deviation).Conclusion:Using TEE as the reference standard, early contrast-enhanced CT scanning with 1 and 3-min delay is necessary for the diagnosis of left appendage thrombus, which could significantly improve the diagnostic efficiency. Patients with high-risk stratification are suitable for direct 3-min delayed scanning.

3.6
3区

Frontiers in cardiovascular medicine 2022

The cyclic adenosine monophosphate elevating medicine, forskolin, reduces neointimal formation and atherogenesis in mice.

Neointimal formation and atherogenesis are major vascular complications following percutaneous coronary intervention, and there is lack of pharmacological therapy. This study was aimed to examine the effect of forskolin (FSK), a cyclic adenosine monophosphate (cAMP)-elevating agent, on vascular response to angioplasty wire injury and on atherogenesis in mice. Forskolin treatment reduced neointima formation at 7 and 28 days after wire injury. Early morphometrics of the injured vessels revealed that FSK treatment enhanced endothelial repair and reduced inflammatory cell infiltration. In vitro treatment of primary aortic cells with FSK, at 3-100 μmol/L, increased endothelial cell proliferation, whereas FSK, at 30-100 μmol/L, inhibited smooth muscle cell proliferation. FSK inhibited lipopolysaccharide-induced leucocyte-endothelial interaction in vitro and in vivo. In a mouse model of atherosclerosis driven by dyslipidaemia and hypertension, FSK administration increased endothelial repair and reduced atherosclerotic plaque formation, without affecting blood pressure, plasma lipids or aortic aneurysms formation. In summary, FSK, at doses relevant to human therapeutic use, protects against neointimal hyperplasia and atherogenesis, and this is attributable to its activities on pro-endothelial repair and anti-inflammation. This study raises a potential of clinical use of FSK as an adjunct therapy to prevent restenosis and atherosclerosis after percutaneous coronary intervention.

5.3
2区

Journal of cellular and molecular medicine 2020