丛祥凤
中国医学科学院阜外医院 检验科
Background:Increased endothelial permeability of pulmonary vessels is a primary pathological characteristic of septic acute lung injury (ALI). Previously, elevated lysophosphatidic acid (LPA) levels and LPA2 (an LPA receptor) expression have been found in the peripheral blood and lungs of septic mice, respectively. However, the specific role of LPA2 in septic ALI remains unclear.Methods:A lipopolysaccharide (LPS)-induced model of sepsis was established in wild-type (WT) and global LPA2 knockout (Lpar2-/-) mice. We examined mortality, lung injury, assessed endothelial permeability through Evans blue dye (EBD) assay in vivo, and transendothelial electrical resistance (TEER) of mouse lung microvascular endothelial cells (MLMECs) in vitro. Enzyme-linked immunosorbent assay (ELISA), histopathological, immunofluorescence, immunohistochemistry, and Western blot were employed to investigate the role of LPA2 in septic ALI.Results:Lpar2 deficiency increased vascular endothelial permeability, impaired lung injury, and increased mortality. Histological examination revealed aggravated inflammation, edema, hemorrhage and alveolar septal thickening in the lungs of septic Lpar2-/- mice. In vitro, loss of Lpar2 resulted in increased permeability of MLMECs. Pharmacological activation of LPA2 by the agonist DBIBB led to significantly reduced inflammation, edema and hemorrhage, as well as increased expression of the vascular endothelial tight junction (TJ) protein zonula occludens-1 (ZO-1) and claudin-5, as well as the adheren junction (AJ) protein VE-cadherin. Moreover, DBIBB treatment was found to alleviate mortality by protecting against vascular endothelial permeability. Mechanistically, we demonstrated that vascular endothelial permeability was alleviated through LPA-LPA2 signaling via the PLC-PKC-FAK pathway.Conclusion:These data provide a novel mechanism of endothelial barrier protection via PLC-PKC-FAK pathway and suggest that LPA2 may contribute to the therapeutic effects of septic ALI.
Journal of inflammation research 2023
BACKGROUND:Risk prediction rules are important to establish appropriate treatment and management strategy for patients with different risk classification of pulmonary embolism (PE). Neutrophils are considered to be related to PE as an essential marker of inflammation. However, few studies have reported the association between neutrophil levels and risk classification of acute PE (APE). The aim of this study was to investigate the role of neutrophil levels upon admission in the assessment of risk classification of APE.METHODS:A total of 299 consecutive APE patients and 90 patients without APE confirmed by computed tomographic pulmonary angiography were retrospectively screened. APE patients were stratified into two subgroups according to clinical guidelines: low- (n = 233) and intermediate- and high-risk (n = 60) APE.RESULTS:The neutrophil levels in intermediate- and high-risk APE patients were significantly higher compared to low-risk APE or non-APE patients (P < 0.001). In multivariable logistic regression analysis, neutrophil levels were significantly and independently associated with intermediate- and high-risk APE (odds ratio = 1.239, 95% confidence interval [CI] 1.055-1.455, P = 0.009). Neutrophil levels were positively correlated with the pulmonary embolism severity index score (r = 0.357, P < 0.001), high sensitive C-reactive protein, D-dimer and pulmonary artery obstruction index (PAOI), in the overall population of APE patients. Receiver-operating characteristic curve analysis revealed that neutrophils had a better diagnostic value for intermediate- and high-risk APE (area under the curve [AUC] = 0.760, 95% CI 0.695-0.826; P < 0.001) compared to PAOI (AUC = 0.719) and D-dimer (AUC = 0.645).CONCLUSIONS:High neutrophil levels upon admission were significantly and independently associated with intermediate- and high-risk APE, which could be regarded as an indicator of inflammation and thrombosis in APE simultaneously. The potent diagnostic role of neutrophil levels and their competitive advantage over PAOI and D-dimer for the assessment of APE risk classification are suggested.
Thrombosis journal 2023
RATIONALE:Myocardial infarction (MI) is one of the most dangerous adverse cardiovascular events. Our previous study found that lysophosphatidic acid (LPA) is increased in human peripheral blood after MI, and LPA has a protective effect on the survival and proliferation of various cell types. However, the role of LPA and its receptors in MI is less understood.OBJECTIVES:To study the unknown role of LPA and its receptors in heart during MI.METHODS AND RESULTS:In this study, we found that mice also had elevated LPA level in peripheral blood, as well as increased cardiac expression of its receptor LPA2 in the early stages after MI. With adult and neonate MI models in global Lpar2 knockout (Lpar2-KO) mice, we found Lpar2 deficiency increased vascular leak leading to disruption of its homeostasis, so as to impaired heart function and increased early mortality. Histological examination revealed larger scar size, increased fibrosis, and reduced vascular density in the heart of Lpar2-KO mice. Furthermore, Lpar2-KO also attenuated blood flow recovery after femoral artery ligation with decreased vascular density in gastrocnemius. Our study revealed that Lpar2 was mainly expressed and altered in cardiac endothelial cells during MI, and use of endothelial-specific Lpar2 knockout mice phenocopied the global knockout mice. Additionally, adenovirus-Lpar2 and pharmacologically activated LPA2 significantly improved heart function, reduced scar size, increased vascular formation, and alleviated early mortality by maintaining vascular homeostasis owing to protecting vessels from leakage. Mechanistic studies demonstrated that LPA-LPA2 signaling could promote endothelial cell proliferation through PI3K-Akt/PLC-Raf1-Erk pathway and enhanced endothelial cell tube formation via PKD1-CD36 signaling.CONCLUSIONS:Our results indicate that endothelial LPA-LPA2 signaling promotes angiogenesis and maintains vascular homeostasis, which is vital for restoring blood flow and repairing tissue function in ischemic injuries. Targeting LPA-LPA2 signal might have clinical therapeutic potential to protect the heart from ischemic injury.
Circulation research 2022
Sepsis consists of life-threatening organ dysfunction resulting from a dysregulated response to infection. Recent studies have found that excessive neutrophil extracellular traps (NETs) contribute to the pathogenesis of sepsis, thereby increasing morbidity and mortality. Lysophosphatidic acid (LPA) is a small glycerophospholipid molecule that exerts multiple functions by binding to its receptors. Although LPA has been functionally identified to induce NETs, whether and how LPA receptors, especially lysophosphatidic acid receptor 3 (LPA3), play a role in the development of sepsis has never been explored. A comprehensive understanding of the impact of LPA3 on sepsis is essential for the development of medical therapy. After intraperitoneal injection of lipopolysaccharide (LPS), Lpar3 -/-mice showed a substantially higher mortality, more severe injury, and more fibrinogen content in the lungs than wild-type (WT) mice. The values of blood coagulation markers, plasma prothrombin time (PT) and fibrinogen (FIB), indicated that the Lpar3 -/- mice underwent a severe coagulation process, which resulted in increased thrombosis. The levels of NETs in Lpar3 -/- mice were higher than those in WT mice after LPS injection. The mortality rate and degree of lung damage in Lpar3 -/- mice with sepsis were significantly reduced after the destruction of NETs by DNaseI treatment. Furthermore, in vitro experiments with co-cultured monocytes and neutrophils demonstrated that monocytes from Lpar3 -/- mice promoted the formation of NETs, suggesting that LPA3 acting on monocytes inhibits the formation of NETs and plays a protective role in sepsis. Mechanistically, we found that the amount of CD14, an LPS co-receptor, expressed by monocytes in Lpar3 -/-mice was significantly elevated after LPS administration, and the MyD88-p65-NFκB signaling axis, downstream of toll-like receptor 4 signaling, in monocytes was overactivated. Finally, after an injection of the LPA3 agonist (2S)-1-oleoyl-2-methylglycero-3-phosphothionate (OMPT), the survival rate of mice with sepsis was improved, organ damage was reduced, and the production of NETs was decreased. This suggested the possible translational value and application prospects of (2S)-OMPT in the treatment of sepsis. Our study confirms an important protective role of LPA3 in curbing the development of sepsis by suppressing NETs production and thrombosis and provides new ideas for sepsis treatment strategies.
Frontiers in immunology 2022
Background: Lysophosphatidic acid (LPA) is a small glycerophospholipid that acts as a potent extracellular signal in various biological processes and diseases. Our previous work demonstrated that the expression of the LPA receptors LPA1 and LPA3 is elevated in the early postnatal heart. However, the role of this stage-specific expression of LPA1 and LPA3 in the heart is unknown. Methods and Results: By using LPA3 and LPA1 knockout mice, and neonatal SD rats treated with Ki16425 (LPA1/LPA3 inhibitor), we found that the number of proliferating cardiomyocytes, detected by coimmunostaining pH3, Ki67 or BrdU with cardiac troponin T, was significantly decreased in the LPA3 knockout mice and the Ki16425-treated rats but not in the LPA1 knockout mice during the first week of postnatal life. Using a myocardial infarction (MI) model, we found that cardiac function and the number of proliferating cardiomyocytes were decreased in the neonatal LPA3 KO mice and increased in the AAV9-mediated cardiac-specific LPA3 overexpression mice. By using lineage tracing and AAV9-LPA3, we further found that LPA3 overexpression in adult mice enhances cardiac function and heart regeneration as assessed by pH3-, Ki67-, and Aurora B-positive cardiomyocytes and clonal cardiomyocytes after MI. Genome-wide transcriptional profiling and additional mechanistic studies showed that LPA induces cardiomyocyte proliferation through the PI3K/AKT, BMP-Smad1/5, Hippo/YAP and MAPK/ERK pathways in vitro, whereas only ERK was confirmed to be activated by LPA-LPA3 signaling in vivo. Conclusion: Our study reports that LPA3-mediated LPA signaling is a crucial factor for cardiomyocyte proliferation in the early postnatal heart. Cardiac-specific LPA3 overexpression improved cardiac function and promoted cardiac regeneration after myocardial injury induced by MI. This finding suggested that activation of LPA3 potentially through AAV-mediated gene therapy might be a therapeutic strategy to improve the outcome after MI.
Theranostics 2020
Neonatal mouse hearts can regenerate completely in 21 days after cardiac injury, providing an ideal model to exploring heart regenerative therapeutic targets. The oxidative damage by Reactive Oxygen Species (ROS) is one of the critical reasons for the cell cycle arrest of cardiomyocytes (CMs), which cause mouse hearts losing the capacity to regenerate in 7 days or shorter after birth. As an antioxidant, hydrogen sulfide (H2S) plays a protective role in a variety of diseases by scavenging ROS produced during the pathological processes. In this study, we found that blocking H2S synthesis by PAG (H2S synthase inhibitor) suspended heart regeneration and CM proliferation with ROS deposition increase after cardiac injury (myocardial infarction or apex resection) in 2-day-old mice. NaHS (a H2S donor) administration improved heart regeneration with CM proliferation and ROS elimination after myocardial infarction in 7-day-old mice. NaHS protected primary neonatal mouse CMs from H2O2-induced apoptosis and promoted CM proliferation via SOD2-dependent ROS scavenging. The oxidative DNA damage in CMs was reduced with the elimination of ROS by H2S. Our results demonstrated for the first time that H2S promotes heart regeneration and identified NaHS as a potent modulator for cardiac repair.
Oxidative medicine and cellular longevity 2020
BACKGROUND:Noncalcified plaques (NCPs) and mixed plaques (MPs) are considered as the high-risk coronary plaques. Endothelin-1 (ET-1) is a vasoactive peptide and shows a high expression in vulnerable plaque. The aim of this study is to investigate the relationship between the bigET-1, the precursor of ET-1, and NCPs/MPs in a Chinese population.METHODS AND RESULTS:A total of 513 patients with chest pain and suspected coronary artery disease were collected and divided into three groups with no plaques, calcified plaques, or NCPs/MPs according to the characteristics of all the plaques. It demonstrated that NCPs/MPs were associated with elevated bigET-1 (P < 0.001). Moreover, the proportion of NCPs/MPs was significantly increased from 43.3% in bigET-1 tertile 1 to 61.0% in tertile 3 group (P = 0.001). Multiple logistic regression analysis further showed that bigET-1 was an independent predictor for the presence of NCPs/MPs (odds ratio = 1.858; 95% confidence interval: 1.017-3.394; P = 0.044).CONCLUSION:The bigET-1 could be an independent predictor for the presence of NCPs/MPs.
Coronary artery disease 2019
The neutrophil-lymphocyte ratio (NLR) is an emerging cardiovascular risk factor. Patients with mixed plaques (MPs) or noncalcified plaques (NCPs) have a higher risk of poor outcomes. However, there are few published data on the relationship between the NLR and the presence of NCP or MP (NCP/MP). We retrospectively collected the clinical and laboratory data of 598 patients with chest pain. According to whether they had coronary atherosclerotic plaques and the characteristics of the most stenotic plaque, we divided them into no plaque, calcified plaques, NCP, and MP. Those with NCP/MP had significantly elevated neutrophil count and NLR ( P < .05). The proportion of NCP/MP was significantly increased from 28.6% in the NLR < 1.55 to 42.7% in the NLR > 2.21 group ( P = .013). Multiple logistic regression analysis showed that NLR was an independent risk factor for the presence of NCP/MP (odds ratio = 1.195; 95% CI: 1.020-1.400; P = .028). The present study demonstrated that the NLR was independently associated with the presence of NCP/MP.
Angiology 2018
The coordination of metabolic shift with genetic circuits is critical to cell specification, but the metabolic mechanisms that drive cardiac development are largely unknown. Reactive oxygen species (ROS) are not only the by-product of mitochondrial metabolism, but play a critical role in signalling cascade of cardiac development as a second messenger. Various levels of ROS appear differential and even oppose effect on selfrenewal and cardiac differentiation of pluripotent stem cells (PSCs) at each stage of differentiation. The intracellular ROS and redox balance are meticulous regulated by several systems of ROS generation and scavenging, among which mitochondria and the NADPH oxidase (NOX) are major sources of intracellular ROS involved in cardiomyocyte differentiation. Some critical signalling modulators are activated or inactivated by oxidation, suggesting ROS can be involved in regulation of cell fate through these downstream targets. In this review, the literatures about major sources of ROS, the effect of ROS level on cardiac differentiation of PSCs, as well as the underlying mechanism of ROS in the control of cardiac fate of PSC are summarised and discussed.
Free radical research 2018
BACKGROUND:Plasma fibrinogen (FIB) has been demonstrated to be a risk factor for cardiovascular disease. Patients with non-calcified plaque (NCP) or mix plaque (MP) have a higher risk of poor outcomes. However, the association between FIB and the presence of NCP or MP (NCP/MP) remains unclear, and if present, whether sex has any impact on this association remains unknown. The aim of this study was to investigate the role of FIB in predicting the presence of NCP/MP and evaluate whether sex has any impact on this association.METHODS:A total of 329 subjects were recruited, and the clinical and laboratory data were collected. Plasma FIB was detected by enzyme-linked immunosorbent assay. According to whether they had coronary atherosclerotic plaques and the characteristics of the most stenotic plaque, we divided them into three groups: no plaque (NP), calcified plaque (CP), and NCP/MP.RESULTS:Patients with NCP/MP had significantly higher FIB level in females, but not in males. Multiple logistic regression analysis showed that FIB was an independent risk factor for the presence of NCP/MP (odds ratio [OR] = 3.677, 95% CI 1.539-8.785, P = 0.003) in females. Receiver operating characteristic (ROC) curve analysis showed that the optimal cut-off value FIB for predicting the presence of NCP/MP was 3.41 g/L (area under curve [AUC] = 0.73, 95% CI 0.63-0.82, P < 0.001) in females.CONCLUSIONS:FIB is independently associated with the presence of NCP/MP in females, but not in males. These results suggest that the potential significance of FIB-lowering regimens in females with NCP/MP.
Biology of sex differences 2018