康连鸣
中国医学科学院阜外医院
BACKGROUND:Serum troponins and CK-MB (creatine kinase-MB) are readily detectable and reliable cardiac-specific biomarkers of subclinical myocardial injury. This study explores the roles of cTnI (cardiac troponin I) and CK-MB in hypertrophic cardiomyopathy (HCM).METHODS:This study included 1045 patients with HCM who had baseline cTnI and CK-MB measurements at Fuwai Hospital between 1999 and 2019. Patients were excluded if they had undergone percutaneous coronary intervention or coronary artery bypass grafting, or had renal failure. Five end points were studied: all-cause death, cardiovascular death, noncardiovascular death, sudden cardiac death, and other cardiovascular death. Cox regression was used to assess the associations of cTnI and CK-MB levels with outcomes.RESULTS:Nine hundred seventy patients with available follow-up data were finally analyzed (mean age, 49.3 years; 36.4% female). During the median 4.3-year follow-up period, 87 patients reached the end points. Higher cTnI (per 0.05 ng/mL increase) and CK-MB (per 1 IU/L increase) levels were associated with increased risks of all-cause death (cTnI: adjusted hazard ratio [HR], 1.038, P<0.001; CK-MB: adjusted HR, 1.021, P=0.004), cardiovascular death (cTnI: adjusted HR, 1.040, P<0.001; CK-MB: adjusted HR, 1.025, P=0.006), and sudden cardiac death (cTnI: adjusted HR, 1.045, P<0.001; CK-MB: adjusted HR, 1.032, P=0.001). Patients with elevated levels of both cTnI and CK-MB had worse prognoses than patients with an elevated level of either biomarker alone and patients who did not have an elevated level of either biomarker. Addition of the binary indicator elevation of both cTnI and CK-MB significantly improved the discrimination and reclassification abilities of the standard HCM Risk- sudden cardiac death model (C statistics: P=0.002; net reclassification improvement, 0.652; integrated discrimination improvement, 0.064).CONCLUSIONS:Comprehensive evaluations of biomarkers of myocardial injury, cTnI and CK-MB, have considerable value for predicting adverse outcomes among patients with HCM. Routine cTnI and CK-MB assessments may help to guide implantable cardioverter defibrillator implantation for primary prevention in HCM.
Circulation. Cardiovascular quality and outcomes 2024
OBJECTIVE:To determine the different clinical characteristics and outcomes of hypertrophic cardiomyopathy (HCM) patients with and without hypertension (HT).METHODS:A total of 696 HCM patients were included in this study and all HCM diagnoses were confirmed by the genetic test. Patients were analyzed separately in the septal reduction therapy (SRT) cohort and the non-SRT cohort. The primary endpoint was cardiovascular death and the secondary endpoint was all-cause death. Outcome analyses were conducted to evaluate the associations between HT and outcomes in HCM. Medications before enrollment and at discharge were collected in the post-hoc analyses.RESULTS:HCM patients without HT were younger, had a lower body mass index, were more likely to have a family history of HCM, and had a smaller left ventricular (LV) end-diastolic diameter than those with HT in both cohorts. A thicker LV wall, a higher level of N-terminal pro-B-type natriuretic peptide, and a higher extent of LV late gadolinium enhancement were additionally observed in patients without HT in the non-SRT cohort. The presence of HT did not alter the distribution pattern of late gadolinium enhancement, as well as the constituent ratio of eight disease-causing sarcomeric gene variants in both cohorts. Outcome analyses showed that in the non-SRT cohort, patients without HT had higher risks of cardiovascular death (HR = 2.537, P = 0.032) and all-cause death (HR = 3.309, P = 0.032). While such prognostic divergence was not observed in the SRT cohort. Further post-hoc analyses in the non-SRT cohort found that patients without HT received fewer non-dihydropyridine calcium channel blockers and angiotensin-converting enzyme inhibitors/angiotensin receptor blockers before enrollment and at discharge.CONCLUSIONS:HCM patients without HT had worse clinical conditions and higher mortality than patients with HT overall, which may result from active medical therapy in HT patients. Active SRT may have a substantial de-risking effect on patients meeting the indications.
Journal of geriatric cardiology : JGC 2023
BACKGROUND:An appropriate indicator of cardiac function in the risk stratification of hypertrophic cardiomyopathy (HCM) patients is urgently needed. Cardiac index that reflects cardiac pumping function may be suitable.OBJECTIVE:The purpose of this study was to investigate the clinical significance of reduced cardiac index in HCM patients.METHODS:A total of 927 HCM patients were enrolled. The primary endpoint was cardiovascular death. The secondary endpoints were sudden cardiac death (SCD) and all-cause death. Combination models were constructed by adding reduced cardiac index and reduced left ventricular ejection fraction (LVEF) to the HCM risk-SCD model. Predictive accuracy was determined by C-statistics.RESULTS:Reduced cardiac index was defined as cardiac index ≤2.42 L/min/m2. During median follow-up of 4.3 years, 51 patients reached the endpoint. Reduced cardiac index independently increased the risk of cardiovascular death (adjusted hazard ratio [aHR] 2.976; P = .007), SCD (aHR 6.385; P = .001), and all-cause death (aHR 2.428; P = .010). By adding reduced cardiac index to the HCM risk-SCD model, the model C-statistic increased from 0.691 to 0.762, with an integrated discrimination improvement of 0.021 (P = .018) and a net reclassification improvement of 0.560 (P = .007). The addition of reduced LVEF failed to improve the original model. Better predictive accuracy for all endpoints was also indicated in reduced cardiac index than in reduced LVEF.CONCLUSION:Reduced cardiac index is an independent predictor of poor prognoses in HCM patients. Combining reduced cardiac index rather than reduced LVEF improved the HCM risk-SCD stratification strategy. The reduced cardiac index showed better predictive accuracy than reduced LVEF for all endpoints.
Heart rhythm 2023
BACKGROUND:Deleterious rare variants in genes encoding desmosome proteins have been identified as the essential basis of arrhythmogenic cardiomyopathy (ACM) and detected in dilated cardiomyopathy, but the relationship between deleterious rare desmosomal variants and hypertrophic cardiomyopathy (HCM) remains unknown.METHODS:Whole exome sequencing was performed in 1000 patients with HCM and 761 non-HCM controls to search for deleterious rare variants in genes encoding desmosomal proteins including PKP2, JUP, DSC2, DSG2, and DSP. Clinical phenotypes were assessed in patients with HCM, and patients with deleterious rare desmosomal variants underwent evaluation of ACM revised Task Force Criteria.RESULTS:A total of 27 deleterious rare desmosomal variants were present in 24 (2.4%) patients with HCM and 5 (0.66%) controls. The variants were more prevalent in the patients with HCM than in the controls (P = 0.004). The majority of patients possessing deleterious rare desmosomal variants could not be diagnosed as ACM. Moreover, the patients with deleterious rare desmosomal variants possessed several distinctive clinical features compared with patients without such variants, including a higher incidence of nonsustained ventricular tachycardia (29.2% vs 4.5%, P < 0.001), left bundle branch block (33.3% vs 1.6%, P < 0.001), and right ventricular involvement for an HCM phenotype (29.2% vs 0.30%, P < 0.001).CONCLUSIONS:We screened deleterious rare desmosomal variants in a large HCM case-control cohort and found deleterious rare desmosomal variants can be relevant to HCM. Moreover, our data indicated deleterious rare desmosomal variants were associated with distinctive clinical features of HCM. These findings require validation in other HCM cohorts.
The Canadian journal of cardiology 2022
AIMS:In the clinical practice, the right ventricular (RV) manifestations have received less attention in hypertrophic cardiomyopathy (HCM). This paper aimed to evaluate the risk prediction value and genetic characteristics of RV involvement in HCM patients.METHODS AND RESULTS:A total of 893 patients with HCM were recruited. RV hypertrophy, RV obstruction, and RV late gadolinium enhancement were evaluated by echocardiography and/or cardiac magnetic resonance. Patients with any of the above structural abnormalities were identified as having RV involvement. All patients were followed with a median follow-up time of 3.0 years. The primary endpoint was cardiovascular death; the secondary endpoints were all-cause death and heart failure (HF)-related death. Survival analyses were conducted to evaluate the associations between RV involvement and the endpoints. Genetic testing was performed on 669 patients. RV involvement was recognized in 114 of 893 patients (12.8%). Survival analyses demonstrated that RV involvement was an independent risk factor for cardiovascular death (P = 0.002), all-cause death (P = 0.011), and HF-related death (P = 0.004). These outcome results were then confirmed by a sensitivity analysis. Genetic testing revealed a higher frequency of genotype-positive in patients with RV involvement (57.0% vs. 31.0%, P < 0.001), and the P/LP variants of MYBPC3 were more frequently identified in patients with RV involvement (30.4% vs. 12.0%, P < 0.001). Logistic analyses indicated the independent correlation between RV involvement and these genetic factors.CONCLUSION:RV involvement was an independent risk factor for cardiovascular death, all-cause death and HF-related death in HCM patients. Genetic factors might contribute to RV involvement in HCM.
European heart journal. Quality of care & clinical outcomes 2022
BACKGROUND:Heart failure with preserved ejection fraction (HFpEF) is the dominant form of heart failure (HF). We here aimed to investigate the characteristics and prognosis of HFpEF in patients with hypertrophic cardiomyopathy (HCM).METHODS:This was a prospective cohort study and patients with HCM with available NT-proBNP results were enrolled. Patients were categorized into HFpEF [defined as LVEF ≥50%, with symptoms or signs of HF, and N-terminal pro-brain natriuretic peptide ≥800 pg/mL according to American Heart Association (AHA) criteria] and without heart failure (non-HF). The outcomes of interest were all-cause death, cardiovascular death, and sudden cardiac death (SCD).RESULTS:Of 1178 included patients with HCM, 513 (43.5%) were identified as having HFpEF according to AHA criteria. Compared with non-HF patients, patients with HFpEF had significantly larger maximal wall thickness (P < 0.001), higher maximal left ventricular outflow tract gradient (P < 0.001), higher proportion of atrial fibrillation (P < 0.001), higher incidence of all-cause death (log-rank test, P = 0.002), and cardiovascular death (log-rank test, P = 0.005). Multivariable Cox analysis showed that patients with HFpEF had a nearly two-fold higher risk of all-cause death (adjusted HR = 1.80, 95% CI 1.11-2.90; P = 0.017) and cardiovascular death (adjusted HR =1.82, 95% CI 1.05-3.18; P = 0.033) than non-HF patients.CONCLUSIONS:Patients with HCM have a high prevalence of HFpEF and those with HFpEF present greater disease severity and higher mortality than non-HF patients, and thus may require an appropriate and more aggressive treatment for HF management. Identification of patients with HFpEF using AHA criteria can provide guidance on patient risk stratification for patients with HCM.
BMC medicine 2022
Background Myocardial replacement fibrosis is one of the major histologic features of hypertrophic cardiomyopathy (HCM), but its characteristics have not been well delineated. Purpose To clarify the characteristics of replacement fibrosis in HCM and to evaluate the prognostic value of the regional extent of fibrosis. Materials and Methods This prospective study evaluated participants with HCM who underwent contrast-enhanced cardiac MRI from March 2011 to April 2019. For each participant, global and 16-segment extent of late gadolinium enhancement (LGE) in the left ventricle (LV) at cardiac MRI was analyzed. The primary end point was all-cause death. Results Among the 798 study participants enrolled (median age, 49 years [interquartile range {IQR}: 38-59 years]; 508 men), 588 (74%) underwent whole-exome sequencing. Thirty-five participants (4%) experienced death from any cause during a median follow-up of 2.9 years (IQR: 1.5-4.7 years). Spearman analysis showed weak correlations between the extent of LGE and wall thickness (LGE of global LV and maximal LV wall thickness, r = 0.35 [P < .001]; LGE and thickness of septum, r = 0.30 [P < .001]). In the 16-segment model, the distribution of LGE was visually inhomogeneous and higher in the basal anterior, basal septal, midanterior, and midseptal regions (P < .001). This similar distribution of LGE was observed in participants with asymmetric septal hypertrophy, those with apical HCM, participants positive for mutation and those negative for mutation, and participants with MYH7 and MYBPC3 mutations. Cox analysis indicated that both the global extent of LGE (adjusted hazard ratio = 1.68 per 10% increase in LGE; P < .001) and the regional extent of LGE (ie, basal, midventricular, and apical regions of LV when on the short-axis view; septum, anterior free wall, inferior free wall, and lateral free wall when on the long-axis view) were associated with adverse outcomes. Conclusion In hypertrophic cardiomyopathy, myocardial replacement fibrosis weakly correlated with hypertrophy, was inhomogeneous and asymmetric, and was predominantly distributed in the interventricular septal wall and anterior free wall at the basal and mid levels. Greater extent of fibrosis was associated with poor prognosis, regardless of its location in the left ventricle. © RSNA, 2021 See also the editorial by Hanneman in this issue.
Radiology 2022
OBJECTIVE:Elevated levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) are associated with heart failure-related death in hypertrophic cardiomyopathy (HCM), but the relationship between NT-proBNP level and sudden cardiac death (SCD) in HCM remains undefined.METHODS:The study prospectively enrolled 977 unrelated patients with HCM with available NT-proBNP results who were prospectively enrolled and followed for 3.0±2.1 years. The Harrell's C-statistic under the receiver operating characteristic curve was calculated to evaluate discrimination performance. A combination model was constructed by adding NT-proBNP tertiles to the HCM Risk-SCD model. The correlation between log NT-proBNP level and cardiac fibrosis as measured by late gadolinium enhancement (LGE) or Masson's staining was analysed.RESULTS:During follow-up, 29 patients had SCD. Increased log NT-proBNP levels were associated with an increased risk of SCD events (adjusted HR 22.27, 95% CI 10.93 to 65.63, p<0.001). The C-statistic of NT-proBNP in predicting SCD events was 0.80 (p<0.001). The combined model significantly improved the predictive efficiency of the HCM Risk-SCD model from 0.72 to 0.81 (p<0.05), with a relative integrated discrimination improvement of 0.002 (p<0.001) and net reclassification improvement of 0.67 (p<0.001). Furthermore, log NT-proBNP levels were significantly correlated with cardiac fibrosis as detected either by LGE (r=0.257, p<0.001) or by Masson's trichrome staining in the myocardium (r=0.198, p<0.05).CONCLUSION:NT-proBNP is an independent predictor of SCD in patients with HCM and may help with risk stratification of this disease.
Heart (British Cardiac Society) 2021
Background The FHOD3 (formin homology 2 domain-containing 3) gene has recently been identified as a causative gene of hypertrophic cardiomyopathy (HCM). However, the pathogenicity of FHOD3 variants remains to be evaluated. This study analyzed the spectrum of FHOD3 variants in a large HCM and control cohort, and explored its correlation with the disease. Methods and Results The genetic analysis of FHOD3 was performed using the whole exome sequencing data from 1000 patients with HCM and 761 controls without HCM. A total of 37 FHOD3 candidate variants were identified, including 25 missense variants and 2 truncating variants. In detail, there were 27 candidate variants detected in 33 (3.3%) patients with HCM, which was significantly higher than in the 12 controls (3.3% versus 1.6%; odds ratio, 2.13; P<0.05). On the basis of familial segregation, we identified one truncating variant (c.1286+2delT) as a causal variant in 4 patients. Furthermore, the FHOD3 candidate variant experienced significantly more risk of cardiovascular death and all-cause death (adjusted hazard ratio [HR], 3.71; 95%, 1.32-8.59; P=0.016; and adjusted HR, 3.02; 95% CI, 1.09-6.85; P=0.035, respectively). Conclusions Our study suggests that FHOD3 is a causal gene for HCM, and that the presence of FHOD3 candidate variants is an independent risk for cardiovascular death and all-cause death in HCM.
Journal of the American Heart Association 2021
BACKGROUND:The presence of variants in OBSCN was identified to be linked to hypertrophic cardiomyopathy (HCM), but whether OBSCN truncating variants were associated with HCM remained unknown.METHODS:Whole-exome sequencing was performed in 986 patients with HCM and 761 non-HCM controls to search for OBSCN truncating variants, and the result was tested in a replication cohort consisting of 529 patients with HCM and 307 controls. The association of the OBSCN truncating variants with baseline characteristics and prognosis of patients with HCM were ascertained.RESULTS:There were 28 qualifying truncating variants in the OBSCN gene detected in 26 (2.6%) patients with HCM and 6 (0.8%) controls. The OBSCN truncating variants were more prevalent in patients with HCM than controls (odds ratio, 3.4, P=0.004). This association was confirmed in the replication cohort (odds ratio, 3.8, P=0.024). The combined effects of the two cohorts estimated the odds ratio to be 3.58 (P<0.001). Patients with or without OBSCN truncating variants shared similar demographic and echocardiographic variables at baseline. During 3.3±2.4 years (4795 patient-years) follow-up, the patients with OBSCN truncating variants were more likely to experience cardiovascular death (adjusted hazard ratio, 3.1 [95% CI, 1.40-6.70], P=0.005) and all-cause death (adjusted hazard ratio, 2.63 [95% CI, 1.21-5.71], P=0.015).CONCLUSIONS:Our data indicated that OBSCN truncating variants contributed to the disease-onset of HCM, and increased the risk of malignant events in patients with HCM.
Circulation. Genomic and precision medicine 2021