陈亮

中国医学科学院阜外医院 心血管疾病国家重点实验室

Relationship between daytime napping and cardiovascular disease: A two-sample mendelian randomization study.

OBJECTIVE:Daytime napping has been reported to have a potential association with an increased risk of cardiovascular diseases (CVDs) in several cohort studies, but the causal effects are unclear. In this study, we aimed to investigate the relationship between daytime napping and CVDs, as well as to validate causality in this relationship by Mendelian randomization (MR).METHODS:A two-sample MR method was used to evaluate the causal effect of daytime napping on CVDs. The exposure of daytime napping was extracted from publicly available genome-wide association studies (GWASs) in the UK Biobank, and the outcomes of 14 CVDs were obtained from the FinnGen consortium. A total of 49 single-nucleotide polymorphisms (SNPs) were used as the instrumental variables. The effect estimates were calculated by using the inverse-variance weighted method.RESULTS:The MR analyses showed that genetically predicted daytime napping was associated with an increased risk of five CVDs, including heart failure (odds ratio (OR): 1.71, 95% CI: 1.19-2.44, p = 0.003), hypertension (OR: 1.51, 95% CI: 1.05-2.16, p = 0.026), atrial fibrillation (OR: 1.71, 95% CI: 1.02-2.88, p = 0.042), cardiac arrythmias (OR: 1.47, 95% CI: 1.47, 95% CI: 1.01-2.13, p = 0.042) and coronary atherosclerosis (OR: 1.77, 95% CI: 1.17-2.68, p = 0.006). No significant influence was observed for other CVDs.CONCLUSION:This two-sample MR analysis suggested that daytime napping was causally associated with an increased risk of heart failure, hypertension, atrial fibrillation, cardiac arrythmias and coronary atherosclerosis.

4.1
3区

Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese 2024

Transcriptome analysis of human hypertrophic cardiomyopathy reveals inhibited cardiac development pathways in children.

The epidemiological, etiological, and clinical characteristics vary greatly between pediatric (P-HCM) and adult (A-HCM) hypertrophic cardiomyopathy (HCM) patients, and the understanding of the heterogeneous pathogenesis mechanisms is insufficient to date. In this study, we aimed to comprehensively assess the respective transcriptome signatures and uncover the essential differences in gene expression patterns among A-HCM and P-HCM. The transcriptome data of adults were collected from public data (GSE89714), and novel pediatric data were first obtained by RNA sequencing from 14 P-HCM and 9 infantile donor heart samples. Our study demonstrates the common signatures of myofilament or protein synthesis and calcium ion regulation pathways in HCM. Mitochondrial function is specifically dysregulated in A-HCM, whereas the inhibition of cardiac developing networks typifies P-HCM. These findings not only distinguish the transcriptome characteristics in children and adults with HCM but also reveal the potential mechanism of the higher incidence of septal defects in P-HCM patients.

5.8
2区

iScience 2024

Association of Magnesium Depletion Score with Congestive Heart Failure: Results from the NHANES 2007-2016.

The magnesium depletion score (MDS) is considered a new valuable and reliable predictor of body magnesium status. This study aimed to explore the association between MDS and congestive heart failure (CHF) among US adults. A total of 19,227 eligible participants from the 2007-2016 National Health and Nutrition Examination Survey were enrolled in this study and then divided into three groups according to the level of MDS (none to low: MDS=0-1, middle: MDS=2, high: MDS=3-5). Sample-weighted logistic regression models were applied to calculate odds ratios (ORs) and 95% confidence intervals (CIs) exploring the independent relationship between MDS and CHF. The estimated prevalence of CHF increased with the increasing level of MDS (none to low: 0.86%, middle: 4.06%, high: 13.52%; P < 0.001). Compared to those in the none-to-low group, participants in the middle and high groups were at significantly higher risk of CHF after adjusting for various covariates (model 3: OR=1.55, 95%CI: 1.05-2.30, P < 0.001; OR=3.20, 95%CI: 2.07-4.96, P < 0.001; respectively). Subgroup analyses indicated that adequate dietary magnesium intake could reduce the risk of CHF in participants who did not meet the recommended dietary allowance (RDA) for magnesium. Besides, there was an interaction between coronary artery disease and MDS on CHF (P for interaction < 0.001). These findings indicated that MDS, a novel indicator estimating magnesium deficiency, is associated with the risk of CHF in non-institutionalized US civilians. Participants whose dietary magnesium intake reaches the RDA might be at lower risk.

3.9
3区

Biological trace element research 2024

Metabolomics Profiling Predicts Ventricular Arrhythmia in Patients with an Implantable Cardioverter Defibrillator.

Implantable cardioverter defibrillators (ICDs) reduce sudden cardiac death (SCD) when patients experience life-threatening ventricular arrhythmias (LTVA). However, current strategies determining ICD patient selection and risk stratification are inefficient. We used metabolomics to assess whether dysregulated metabolites are associated with LTVA and identify potential biomarkers. Baseline plasma samples were collected from 72 patients receiving ICDs. Over a median follow-up of 524.0 days (range 239.0-705.5), LTVA occurred in 23 (31.9%) patients (22 effective ICD treatments and 1 SCD). After confounding risk factors adjustment for age, smoking, secondary prevention, and creatine kinase MB, 23 metabolites were significantly associated with LTVA. Pathway analysis revealed LTVA associations with disrupted metabolism of glycine, serine, threonine, and branched chain amino acids. Pathway enrichment analysis identified a panel of 6 metabolites that potentially predicted LTVA, with an area under the receiver operating characteristic curve of 0.8. Future studies are necessary on biological mechanisms and potential clinical use.

3.4
3区

Journal of cardiovascular translational research 2024

Quantitative flow ratio and graft outcomes of coronary artery bypass grafting surgery: A retrospective study.

OBJECTIVE:Quantitative flow ratio (QFR) is a novel noninvasive tool for the functional assessment of coronary stenosis. Whether or not QFR could predict graft outcomes after coronary artery bypass grafting procedure is unknown. This study aimed to investigate the association of QFR value with graft outcomes after coronary artery bypass grafting surgery.METHODS:The QFR values were retrospectively obtained from patients receiving coronary artery bypass grafting surgery from 2017 to 2019 in the Graft Patency Between No-Touch Vein Harvesting Technique and Conventional Approach in Coronary Artery Bypass Graft Surgery (PATENCY) trial. QFR calculation was conducted in eligible coronary arteries, defined as those with ≥50% stenosis and a diameter ≥1.5 mm. A threshold of QFR ≤0.80 was considered functionally significant stenosis. The primary outcome was graft occlusion at 12 months evaluated by computed tomography angiography.RESULTS:Two thousand twenty-four patients with 7432 grafts (2307 arterial grafts and 5125 vein grafts) were included. For the arterial grafts, the risk of 12-month occlusion was significantly increased in the QFR >0.80 group than in the QFR ≤0.80 group (7.1% vs 2.6%; P = .001; unadjusted model: odds ratio, 3.08; 95% CI, 1.65-5.75; fully adjusted model: odds ratio, 2.67; 95% CI, 1.44-4.97). No significant association was observed in the vein grafts (4.6% vs 4.3%; P = .67; unadjusted model: odds ratio, 1.10; 95% CI, 0.82-1.47; fully adjusted model: odds ratio, 1.12; 95% CI, 0.83-1.51). Results were stable across sensitivity analyses with a QFR threshold of 0.78 and 0.75.CONCLUSIONS:Target vessel QFR >0.80 was associated with a significantly higher risk of arterial graft occlusion at 12 months after coronary artery bypass grafting surgery. No significant association was found between target lesion QFR and vein graft occlusion.

6.0
1区

The Journal of thoracic and cardiovascular surgery 2023

Mass Spectrometry Imaging-Based Single-Cell Lipidomics Profiles Metabolic Signatures of Heart Failure.

Heart failure (HF), leading as one of the main causes of mortality, has become a serious public health issue with high prevalence around the world. Single cardiomyocyte (CM) metabolomics promises to revolutionize the understanding of HF pathogenesis since the metabolic remodeling in the human hearts plays a vital role in the disease progression. Unfortunately, current metabolic analysis is often limited by the dynamic features of metabolites and the critical needs for high-quality isolated CMs. Here, high-quality CMs were directly isolated from transgenic HF mice biopsies and further employed in the cellular metabolic analysis. The lipids landscape in individual CMs was profiled with a delayed extraction mode in time-of-flight secondary ion mass spectrometry. Specific metabolic signatures were identified to distinguish HF CMs from the control subjects, presenting as possible single-cell biomarkers. The spatial distributions of these signatures were imaged in single cells, and those were further found to be strongly associated with lipoprotein metabolism, transmembrane transport, and signal transduction. Taken together, we systematically studied the lipid metabolism of single CMs with a mass spectrometry imaging method, which directly benefited the identification of HF-associated signatures and a deeper understanding of HF-related metabolic pathways.

11.0
1区

Research (Washington, D.C.) 2023

Lineage-specific regulatory changes in hypertrophic cardiomyopathy unraveled by single-nucleus RNA-seq and spatial transcriptomics.

Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder characterized by cardiomyocyte hypertrophy and cardiac fibrosis. Pathological cardiac remodeling in the myocardium of HCM patients may progress to heart failure. An in-depth elucidation of the lineage-specific changes in pathological cardiac remodeling of HCM is pivotal for the development of therapies to mitigate the progression. Here, we performed single-nucleus RNA-seq of the cardiac tissues from HCM patients or healthy donors and conducted spatial transcriptomic assays on tissue sections from patients. Unbiased clustering of 55,122 nuclei from HCM and healthy conditions revealed 9 cell lineages and 28 clusters. Lineage-specific changes in gene expression, subpopulation composition, and intercellular communication in HCM were discovered through comparative analyses. According to the results of pseudotime ordering, differential expression analysis, and differential regulatory network analysis, potential key genes during the transition towards a failing state of cardiomyocytes such as FGF12, IL31RA, and CREB5 were identified. Transcriptomic dynamics underlying cardiac fibroblast activation were also uncovered, and potential key genes involved in cardiac fibrosis were obtained such as AEBP1, RUNX1, MEOX1, LEF1, and NRXN3. Using the spatial transcriptomic data, spatial activity patterns of the candidate genes, pathways, and subpopulations were confirmed on patient tissue sections. Moreover, we showed experimental evidence that in vitro knockdown of AEBP1 could promote the activation of human cardiac fibroblasts, and overexpression of AEBP1 could attenuate the TGFβ-induced activation. Our study provided a comprehensive analysis of the lineage-specific regulatory changes in HCM, which laid the foundation for targeted drug development in HCM.

33.5
1区

Cell discovery 2023

Radial and Circumferential CMR-Based RV Strain Predicts Low R Wave Amplitude after ICD Implantation in Patients with Arrhythmogenic Cardiomyopathy.

Inadequate R wave amplitude (RWA) after implantable cardiac defibrillator (ICD) implantation in patients with arrhythmogenic cardiomyopathy (ACM) was suspected to relate to right ventricle impairment. However, little data-based evidence was provided to quantify the association. We retrospectively enrolled ACM patients receiving CMR examinations before transvenous ICD implantation from Fuwai Hospital. The RWA was obtained within 24 h and at 2-6-month follow-up after the operation. Structural, functional, as well as tissue characterization of the left ventricle (LV) and right ventricle (RV), were analyzed in relation to RWA. Among the 87 ACM patients (median RWA: 8.0 mV), 19 (21.8%) patients were found with low initial RWA (<5 mV) despite attempts in multiple positions. RV end diastolic diameter (RVEDD), (r = -0.44), RV ejection fraction (RVEF, r = 0.43), RV end diastolic volume index (RVEDVi, r = -0.49), RV end systolic volume index (RVESVi, r = -0.53), RV global circumferential (RVGCS, r = -0.64), and radial strain (RVGRS, r = 0.61, all p < 0.001) rather than LV metrics correlated strongly with initial RWA. RVGCS, RVESVi, and RVGRS were decent predictors of low RWA (areas under the curve AUC: 0.814, 0.769, 0.757, respectively) early after implantation and during 2-6-month follow-up. To summarize, low RWA of ICD lead in ACM patients was associated with RV abnormalities. The RVGCS, RVGRS, and RVESVi can be valuable predictors for identifying low RWA prior to ICD implantation.

3.9
3区

Journal of clinical medicine 2023

Urine metabolites for preoperative prediction of acute kidney injury after coronary artery bypass graft surgery.

OBJECTIVE:Acute kidney injury is a common complication after on-pump coronary artery bypass grafting. Prediction of acute kidney injury remains a challenge. Our study aims to identify a panel of urine metabolites for preoperative warning of acute kidney injury after on-pump coronary artery bypass grafting.METHODS:A total of 159 patients undergoing isolated on-pump coronary artery bypass grafting were enrolled from July 7, 2017, to May 17, 2019. Preoperative urine samples were analyzed with the approach of liquid chromatography-mass spectrometry-based urine metabolomics. The study end point was the episode of acute kidney injury within 48 hours postoperatively. The predictive performance was determined by the area under the curve and calibration curve. The results were validated using bootstrap resampling.RESULTS:The acute kidney injury (n = 55) and nonacute kidney injury (n = 104) groups showed significant different metabolic profiling. A total of 28 metabolites showed significant differences between the acute kidney injury and nonacute kidney injury groups. A metabolite panel of 5 metabolites (tyrosyl-gamma-glutamate, deoxycholic acid glycine conjugate, 5-acetylamino-6-amino-3-methyluracil, arginyl-arginine, and L-methionine) was discovered to have a good predicting performance (area under the curve, 0.89; 95% confidence interval, 0.82-0.93), which is higher than the clinical factor-based model (area under the curve, 0.63; 95% confidence interval, 0.53-0.72). Internal validation by bootstrap resampling showed an adjusted area under the curve of 0.88, and the calibration curve demonstrated good agreement between prediction and observation in the probability of postoperative acute kidney injury. Decision curve analysis revealed a superior net benefit of the metabolite model over the traditional clinical factor-based model.CONCLUSIONS:We present 5 urine metabolites related to acute kidney injury after coronary artery bypass grafting. This metabolite model may serve as a preoperative warning of acute kidney injury after on-pump coronary artery bypass grafting.

6.0
1区

The Journal of thoracic and cardiovascular surgery 2023

Acylation-stimulating protein and heart failure progression in arrhythmogenic right ventricular cardiomyopathy.

AIMS:Our previous studies suggested that the complement system was critical in the prognosis of arrhythmogenic right ventricular cardiomyopathy (ARVC). The acylation-stimulating protein (ASP), generated through the alternate complement pathway, was reported to regulate lipogenesis and triglyceride storage. This study aimed to investigate the role of ASP in predicting adverse cardiac events in an ARVC cohort.METHODS AND RESULTS:We enrolled 111 ARVC patients and 106 healthy volunteers, and measured their plasma ASP levels using enzyme-linked immunosorbent assays. Plasma ASP levels were significantly higher in the ARVC patients than in the healthy controls (2325.22 ± 20.08 vs. 2189.75 ± 15.55, P < 0.001), with a similar trend observed in the myocardial explant assay. Spearman correlation analysis indicated plasma ASP level associated with cardiac structural (right ventricular internal dimension, P = 0.006) and functional remodelling (left ventricular ejection fraction, P = 0.002) in ARVC patients. The ARVC patients were followed up for an average of 17.79 ± 1.09 months. Heart failure-associated events (HFAEs) were defined as heart transplantation, on a cardiac transplant list, or death due to end-stage heart failure. Plasma ASP levels in patients with HFAEs were significantly higher than in those without clinical events (2486.03 ± 26.70 vs. 2268.83 ± 23.51, P < 0.001) or those with malignant arrhythmic events (2486.03 ± 26.70 vs. 2297.80 ± 60.46, P = 0.008). LASSO (least absolute shrinkage and selection operator) and multivariable Cox regression analyses showed the ASP level (HR = 1.004, 95% CI [1.002,1.006], P = 0.002) was an independent predictor for adverse HFAEs in ARVC patients. The spline-fitting procedure was applied to illustrate the HFAE-free probabilities at different time points.CONCLUSIONS:Our results suggest that plasma ASP may be a useful biomarker in prediction of adverse HF-associated events in ARVC patients.

3.8
2区

ESC heart failure 2023