史春霞

中国医学科学院阜外医院 麻醉科

Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury.

BACKGROUND:Studies suggested that anesthetics administered upon the early reperfusion or "anesthetic postconditioning" could protect post-ischemic hearts against myocardial ischemia reperfusion injury (MIRI). However, the mechanism responsible for such protection was not well-elucidated. We investigated the cardioprotection induced by sevoflurane postconditioning (SpostC) in rat hearts in vitro, and the respective role of phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase 1 and 2 (ERK 1/2), mitochondrial K(ATP) channels (mitoK(ATP)) and mitochondrial permeability transition pore (mPTP), by selectively inhibiting PI3K, ERK 1/2, mitoK(ATP), with LY294002 (LY), PD98059 (PD), 5-hydroxydecanoate (5-HD) and by directly opening of mPTP with atractyloside (ATR), respectively.METHODS:Isolated rat hearts were randomly assigned to one of the 12 groups (n = 15): Time control (continuous perfusion), ISCH (30 minutes of ischemia followed by 60 minutes of reperfusion alone), SpostC (3% sevoflurane postconditioning was administered during the first 15 minutes of reperfusion after 30 minutes of ischemia), ISCH + LY, ISCH + PD, ISCH + ATR, ISCH + 5-HD and ISCH + dimethyl sulfoxide (DMSO) groups (LY, PD, ATR, 5-HD and DMSO (the vehicle) was administered respectively during the first 15 minutes of reperfusion following test ischemia), SpostC + LY, SpostC + PD, SpostC + ATR and SpostC + 5-HD groups (LY, PD, ATR and 5-HD was coadministered with 3% sevoflurane, respectively). Hemodynamics was compared within and between groups. Infarction size was determined at the end of experiments using triphenyltetrazolium chloride (TTC) staining. Lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) released from necrotic myocardium, were compared among TC, ISCH and SpostC groups. To investigate the relationships between RISK and mPTP implicated in SpostC, NAD(+) content in myocardium, a marker of mPTP opening, was compared among some experimental groups (TC, ISCH, ISCH + LY, ISCH + PD, ISCH + DMSO, SpostC, SpostC + LY, SpostC + PD). To further investigate whether the anti-apoptotic mechanism is implicated in SpostC-induced cardioprotection and its association with mitochondria, TUNEL staining was performed in some experimental groups (TC, ISCH, ISCH + 5-HD, ISCH + ATR, ISCH + DMSO, SpostC, SpostC + 5-HD, SpostC + ATR).RESULTS:When compared with unprotected hearts subjected to 30 minutes of ischemia, exposure to 3% sevoflurane for 15 minutes during early reperfusion significantly improved functional recovery, decreased myocardial infarct size, decreased LDH, CK-MB and cTnI release, and decreased cardiomyocyte apoptosis (P < 0.05). However, such cardioprotective effects of hemodynamic recovery and infarct size reduction by sevoflurane was completely abolished by any one of LY294002, PD98059, atractyloside and 5-hydroxydecanoate (P < 0.05). Additionally, either LY294002 or PD98059 could reverse the inhibitory effect of SpostC over mPTP opening upon reperfusion (P < 0.05). Both atractyloside and 5-hydroxydecanoate could abrogate the anti-apoptotic effects of SpostC (P < 0.05).CONCLUSION:These findings demonstrate that PI3K, ERK 1/2, mitoK(ATP) and mPTP are key players in sevoflurane postconditioning induced cardioprotective mechanisms in isolated rat hearts subjected to MIRI.

6.1
3区

Chinese medical journal 2010

Attenuation of ischemia-reperfusion injury by sevoflurane postconditioning involves protein kinase B and glycogen synthase kinase 3 beta activation in isolated rat hearts.

Volatile anesthetic ischemic postconditioning reduces infarct size following ischemia/reperfusion. Whether phosphorylation of protein kinase B (PKB/Akt) and glycogen synthase kinase 3 beta (GSK3β) is causal for cardioprotection by postconditioning is controversial. We therefore investigated the impact of PKB/Akt and GSK3β in isolated perfused rat hearts subjected to 40 min of ischemia followed by 1 h of reperfusion. 2.0% sevoflurane (1.0 minimum alveolar concentration) was administered at the onset of reperfusion in 15 min as postconditioning. Western blot analysis was used to determine phosphorylation of PKB/Akt and its downstream target GSK3β after 1 h of reperfusion. Mitochondrial and cytosolic content of cytochrome C checked by western blot served as a marker for mitochondrial permeability transition pore opening. Sevoflurane postconditioning significantly improved functional cardiac recovery and decreased infarct size in isolated rat hearts. Compared with unprotected hearts, sevoflurane postconditioning-induced phosphorylation of PKB/Akt and GSK3β were significantly increased. Increase of cytochrome C in mitochondria and decrease of it in cytosol is significant when compared with unprotected ones which have reversal effects on cytochrome C. The current study presents evidence that sevoflurane-induced cardioprotection at the onset of reperfusion are partly through activation of PKB/Akt and GSK3β.

2.8
4区

Molecular biology reports 2010

Sevoflurane postconditioning protects chronically-infarcted rat hearts against ischemia-reperfusion injury by activation of pro-survival kinases and inhibition of mitochondrial permeability transition pore opening upon reperfusion.

We evaluated the cardioprotection against myocardial ischemia-reperfusion injury induced by sevoflurane postconditioning (SpostC) in chronically-infarcted rat hearts, and investigated the roles of phosphoinositide 3-kinase (PI3K)-protein kinase B/Akt (PKB/Akt), mitogen-activated extracellular regulated kinase 1/2 (MEK 1/2)-extracellular regulated kinase 1/2 (ERK 1/2), and mitochondrial permeability transition pore (mPTP). Left anterior descending (LAD) coronary artery was ligated to induce myocardial infarction in rats. Six weeks later, chronically-infarcted hearts were isolated and subjected to 30 min of global ischemia, followed by 1 h of reperfusion with Krebs-Henseleit (K-H) buffer. SpostC was administered by perfusing the hearts with K-H buffer saturated with 3% sevoflurane during the first 15 min of reperfusion. To evaluate the role of PI3K-PKB/Akt and MEK 1/2-ERK 1/2 in SpostC, PI3K inhibitor LY294002 (15 microM) and MEK 1/2 inhibitor PD98059 (20 microM) were administered alone or together with sevoflurane during the first 15 min of reperfusion. We found that exposure of 3% sevoflurane during early reperfusion significantly improved functional recovery (improved left ventricular developed pressure (LVDP), +/-dp/dt, CF, HR and reduced left ventricular end-diastolic pressure (LVEDP)), decreased myocardial infarct size and reduced LDH and CK-MB release, when compared with unprotected hearts. However, these protective effects were abolished in the presence of either LY294002 or PD98059, which was accompanied by the prevention of PKB/Akt and ERK 1/2 phosphorylation, and reduction of myocardial nicotinamide adenine dinucleotide (NAD+) content. These findings suggest that sevoflurane postconditioning protects chronically-infarcted rat hearts against ischemia-reperfusion injury by inhibiting mPTP opening via recruitment of PKB/Akt and ERK 1/2.

2.0
4区

Biological & pharmaceutical bulletin 2009