高倩南

阜外医院 高血压

Association of stage 1 hypertension defined by the 2017 ACC/AHA guideline with cardiovascular events and mortality in Chinese adults.

BACKGROUND:The 2017 American College of Cardiology/American Heart Association (ACC/AHA) blood pressure (BP) guideline lowered the threshold defining hypertension to 130/80 mmHg. However, how stage 1 hypertension defined using this guideline is associated with cardiovascular events in Chinese adults remains unclear. This study assessed the association between stage 1 hypertension defined by the 2017 ACC/AHA guideline and clinical outcomes in the Chinese population.METHODS:Participants with stage 1 hypertension ( n = 69,509) or normal BP ( n = 34,142) were followed in this study from 2006/2007 to 2020. Stage 1 hypertension was defined as a systolic blood pressure of 130-139 mmHg or a diastolic blood pressure of 80-89 mmHg. None were taking antihypertensive medication or had a history of myocardial infarction (MI), stroke, or cancer at baseline. The primary outcome was a composite of MI, stroke, and all-cause mortality. The secondary outcomes were individual components of the primary outcome. Cox proportional hazards models were used for the analysis.RESULTS:During a median follow-up of 11.09 years, we observed 10,479 events (MI, n = 995; stroke, n = 3408; all-cause mortality, n = 7094). After multivariable adjustment, the hazard ratios for stage 1 hypertension vs. normal BP were 1.20 (95% confidence interval [CI], 1.13-1.25) for primary outcome, 1.24 (95% CI, 1.05-1.46) for MI, 1.45 (95% CI, 1.33-1.59) for stroke, and 1.11 (95% CI, 1.04-1.17) for all-cause mortality. The hazard ratios for participants with stage 1 hypertension who were prescribed antihypertensive medications compared with those without antihypertensive treatment during the follow-up was 0.90 (95% CI, 0.85-0.96).CONCLUSIONS:Using the new definition, Chinese adults with untreated stage 1 hypertension are at higher risk for MI, stroke, and all-cause mortality. This finding may help to validate the new BP classification system in China.

6.1
3区
第一作者

Chinese medical journal 2024

Severity of non-alcoholic fatty liver disease is a risk factor for developing hypertension from prehypertension.

BACKGROUND:There is little published evidence about the role of non-alcoholic fatty liver disease (NAFLD) in the progression from prehypertension to hypertension. This study was conducted to investigate the association of NAFLD and its severity with the risk of hypertension developing from prehypertension.METHODS:The study cohort comprised 25,433 participants from the Kailuan study with prehypertension at baseline; those with excessive alcohol consumption and other liver diseases were excluded. NAFLD was diagnosed by ultrasonography and stratified as mild, moderate, or severe. Univariable and multivariable Cox proportional hazard regression was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) of incident hypertension according to the presence and 3 categories of severity of NAFLD.RESULTS:During a median of 12.6 years of follow-up, 10,638 participants progressed to hypertension from prehypertension. After adjusting for multiple risk factors, patients with prehypertension and NAFLD had a 15% higher risk of incident hypertension than those without NAFLD (HR = 1.15, 95% CI 1.10-1.21). Moreover, the severity of NAFLD was associated with the incidence of hypertension, which was higher in patients with more severe NAFLD (HR = 1.15 [95% CI 1.10-1.21] in the mild NAFLD group; HR = 1.15 [95% CI 1.07-1.24] in the moderate NAFLD group; and HR = 1.20 [95% CI 1.03-1.41] in the severe NAFLD group). Subgroup analysis indicated that age and baseline systolic blood pressure may modify this association.CONCLUSIONS:NAFLD is an independent risk factor for hypertension in patients with prehypertension. The risk of incident hypertension increases with the severity of NAFLD.

6.1
3区

Chinese medical journal 2023

Alterations of Gut Microbiome, Metabolome, and Lipidome in Takayasu Arteritis.

OBJECTIVE:Mounting evidence has linked microbiome and metabolome to systemic autoimmunity and cardiovascular diseases (CVDs). Takayasu arteritis (TAK) is a rare disease that shares features of immune-related inflammatory diseases and CVDs, about which there is relatively limited information. This study was undertaken to characterize gut microbial dysbiosis and its crosstalk with phenotypes in TAK.METHODS:To address the discriminatory signatures, we performed shotgun sequencing of fecal metagenome across a discovery cohort (n = 97) and an independent validation cohort (n = 75) including TAK patients, healthy controls, and controls with Behçet's disease (BD). Interrogation of untargeted metabolomics and lipidomics profiling of plasma and fecal samples were also used to refine features mediating associations between microorganisms and TAK phenotypes.RESULTS:A combined model of bacterial species, including unclassified Escherichia, Veillonella parvula, Streptococcus parasanguinis, Dorea formicigenerans, Bifidobacterium adolescentis, Lachnospiraceae bacterium 7 1 58FAA, Escherichia coli, Streptococcus salivarius, Klebsiella pneumoniae, Bifidobacterium longum, and Lachnospiraceae Bacterium 5 1 63FAA, distinguished TAK patients from controls with areas under the curve (AUCs) of 87.8%, 85.9%, 81.1%, and 71.1% in training, test, and validation sets including healthy or BD controls, respectively. Diagnostic species were directly or indirectly (via metabolites or lipids) correlated with TAK phenotypes of vascular involvement, inflammation, discharge medication, and prognosis. External validation against publicly metagenomic studies (n = 184) on hypertension, atrial fibrillation, and healthy controls, confirmed the diagnostic accuracy of the model for TAK.CONCLUSION:This study first identifies the discriminatory gut microbes in TAK. Dysbiotic microbes are also linked to TAK phenotypes directly or indirectly via metabolic and lipid modules. Further explorations of the microbiome-metagenome interface in TAK subtype prediction and pathogenesis are suggested.

13.3
1区

Arthritis & rheumatology (Hoboken, N.J.) 2023

Pre-miRNA Hsa-Let-7a-2: a Novel Intracellular Partner of Angiotensin II Type 2 Receptor Negatively Regulating its Signals.

G protein-coupled receptors (GPCRs) are the largest family of druggable targets, and their biological functions depend on different ligands and intracellular interactomes. Some microRNAs (miRNAs) bind as ligands to RNA-sensitive toll-like receptor 7 to regulate the inflammatory response, thereby contributing to the pathogenesis of cancer or neurodegeneration. It is unknown whether miRNAs bind to angiotensin II (Ang II) type 2 receptor (AGTR2), a critical protective GPCR in cardiovascular diseases, as ligands or intracellular interactomes. Here, screening for miRNAs that bind to AGTR2, we identified and confirmed that the pre-miRNA hsa-let-7a-2 non-competitively binds to the intracellular third loop of AGTR2. Functionally, intracellular hsa-let-7a-2 overexpression suppressed the Ang II-induced AGTR2 effects such as cAMP lowering, RhoA inhibition, and activation of Src homology 2 domain-containing protein-tyrosine phosphatase 1, whereas hsa-let-7a-2 knockdown enhanced these effects. Consistently, overexpressed hsa-let-7a-2 restrained the AGTR2-induced antiproliferation, antimigration, and proapoptosis of cells, and vasodilation of mesenteric arteries. Our findings demonstrated that hsa-let-7a-2 is a novel intracellular partner of AGTR2 that negatively regulates AGTR2-activated signals.

9.2
2区

International journal of biological sciences 2022

Severity of Nonalcoholic Fatty Liver Disease is Associated With Cardiovascular Outcomes in Patients With Prehypertension or Hypertension: A Community-Based Cohort Study.

Background:It is unclear whether more severe non-alcoholic fatty liver disease (NAFLD) combined with prehypertension or hypertension is associated with a higher risk of cardiovascular events (CVEs). To evaluate the relationship between the severity of NAFLD and CVEs among patients with prehypertension or hypertension.Methods:In this prospective community-based Kailuan cohort, participants without cardiovascular disease and alcohol abuse, or other liver diseases were enrolled. NAFLD was diagnosed by abdominal ultrasonography. Prehypertension was defined as systolic blood pressure (BP) of 120-139 mmHg or diastolic BP of 80-89 mmHg. Participants with NAFLD were divided into mild, moderate, and severe subgroups. Follow-up for CVEs including myocardial infarction, hemorrhagic stroke, and ischemic stroke. The Cox proportional hazards model was used to estimate hazard ratios and 95% CIs of CVEs according to the severity of NAFLD and hypertensive statutes. The C-statistic was used to evaluate the efficiency of models.Results:A total of 71926 participants (mean [SD] age, 51.83 [12.72] years, 53794 [74.79%] men, and 18132 [25.21%] women) were enrolled in this study, 6,045 CVEs occurred during a median of 13.02 (0.65) years of follow-up. Compared with participants without NAFLD, the hazard ratios of CVEs for patients with mild, moderate, and severe NAFLD were 1.143 (95% CI 1.071-1.221, P < 0.001), 1.218 (95% CI 1.071-1.221, P < 0.001), and 1.367 (95% CI 1.172-1.595, P < 0.001), respectively. Moreover, participants with prehypertension plus moderate/severe NAFLD and those with hypertension plus moderate/severe NAFLD had 1.558-fold (95% CI 1.293-1.877, P < 0.001) and 2.357-fold (95% CI 2.063-2.691, P < 0.001) higher risks of CVEs, respectively, compared with those with normal BP and no NAFLD. Adding a combination of NAFLD and BP status to the crude Cox model increased the C-statistic by 0.0130 (0.0115-0.0158, P < 0.001).Conclusions:Our findings indicated that the increased cardiovascular risk with elevated BP is largely driven by the coexistence of moderate/severe NAFLD, suggesting that the severity of NAFLD may help further stratify patients with prehypertension and hypertension.

5.2
2区

Frontiers in endocrinology 2022

Kidney microbiota dysbiosis contributes to the development of hypertension.

Gut microbiota dysbiosis promotes metabolic syndromes (e.g., hypertension); however, the patterns that drive hypertensive pathology and could be targeted for therapeutic intervention are unclear. We hypothesized that gut microbes might translocate to the kidney to trigger hypertension. We aimed to uncover their method of colonization, and thereby how to maintain blood pressure homeostasis. Using combined approaches based on fluorescence in situ hybridization (FISH) and immunofluorescence staining, electron microscopy analysis, bacterial cultures, species identification, and RNA-sequencing-based meta-transcriptomics, we first demonstrated the presence of bacteria within the kidney of spontaneously hypertensive rats (SHRs) and its normotensive counterpart, Wistar-Kyoto rats (WKYs), and patients with hypertension. Translocated renal bacteria were coated with secretory IgA (sIgA) or remained dormant in the L-form. Klebsiella pneumoniae (K.pn) was identified in the kidneys of germ-free (GF) mice following intestinal transplantation, which suggested an influx of gut bacteria into the kidneys. Renal bacterial taxa and their function are associated with hypertension. Hypertensive hosts showed increased richness in the pathobionts of their kidneys, which were partly derived from the gastrointestinal tract. We also demonstrated the indispensable role of bacterial IgA proteases in the translocation of live microbes. Furthermore, Tartary buckwheat dietary intervention reduced blood pressure and modulated the core renal flora-host ecosystem to near-normal states. Taken together, the unique patterns of viable and dormant bacteria in the kidney provide insight into the pathogenesis of non-communicable chronic diseases and cardiometabolic diseases (e.g., hypertension), and may lead to potential novel microbiota-targeted dietary therapies.

12.2
1区

Gut microbes 2022

Causal associations between disorders of lipoprotein metabolism and ten cardiovascular diseases.

Disorders of lipoprotein metabolism have been linked with an increased risk of cardiovascular diseases (CVDs) but the causal association is unclear. In this study, we investigated the causal association between disorders of lipoprotein metabolism and CVDs using two-sample Mendelian randomization (MR). The exposure was obtained from Finn genome-wide association studies (14,010 cases, 197,259 controls), and the corresponding CVDs were extracted from the largest published genome-wide association studies. A random-effects inverse-variance weighted method was used for the main analyses with a complementary analysis using the weighted median and MR-Egger approaches. Multiple sensitivity analyses were performed to assess horizontal pleiotropy. The MR analysis indicated positive associations of disorders of lipoprotein metabolism with coronary artery disease (odds ratio [OR] 1.670, 95% confidence interval [CI] 1.373-2.031; p < 0.001), aortic aneurysm (OR 1.394, 95% CI 1.199-1.619; p < 0.001), heart failure (OR 1.20, 95% CI 1.115-1.294; p < 0.001), hypertension (OR 1.011, 95% CI 1.006-1.091; p < 0.001), old myocardial infarction (OR 1.004, 95% CI 1.002-1.007; p = 0.001), and stroke (OR 1.002, 95% CI 1.001-1.003; p = 0.002). There is a suggestive causal relationship between disorders of lipoprotein metabolism and atrial fibrillation (OR 1.047, 95% CI 1.006-1.091; p = 0.026) and acute myocardial infarction (OR 1.003, 95% CI 1.001-1.005; p = 0.012). There was limited evidence of a causal association between disorders of lipoprotein metabolism and peripheral vascular disease and venous thromboembolism. Our findings indicate a significant causal association between disorders of lipoprotein metabolism and many CVDs, including coronary artery disease, aortic aneurysm, heart failure, hypertension, old myocardial infarction, and stroke. These associations may be useful for development of treatment strategies that regulate lipoprotein metabolism in patients with CVD.

5.5
2区
第一作者

Frontiers in cell and developmental biology 2022

Identification of the hub and prognostic genes in liver hepatocellular carcinoma via bioinformatics analysis.

Hepatocellular carcinoma (HCC) is a common malignancy. However, the molecular mechanisms of the progression and prognosis of HCC remain unclear. In the current study, we merged three Gene Expression Omnibus (GEO) datasets and combined them with The Cancer Genome Atlas (TCGA) dataset to screen differentially expressed genes. Furthermore, protein‒protein interaction (PPI) and weighted gene coexpression network analysis (WGCNA) were used to identify key gene modules in the progression of HCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that the terms were associated with the cell cycle and DNA replication. Then, four hub genes were identified (AURKA, CCNB1, DLGAP5, and NCAPG) and validated via the expression of proteins and transcripts using online databases. In addition, we established a prognostic model using univariate Cox proportional hazards regression and least absolute shrinkage and selection operator (LASSO) regression. Eight genes were identified as prognostic genes, and four genes (FLVCR1, HMMR, NEB, and UBE2S) were detrimental gens. The areas under the curves (AUCs) at 1, 3 and 5 years were 0.622, 0.69, and 0.684 in the test dataset, respectively. The effective of prognostic model was also validated using International Cancer Genome Consortium (ICGC) dataset. Moreover, we performed multivariate independent prognostic analysis using multivariate Cox proportional hazards regression. The results showed that the risk score was an independent risk factor. Finally, we found that all prognostic genes had a strong positive correlation with immune infiltration. In conclusion, this study identified the key hub genes in the development and progression of HCC and prognostic genes in the prognosis of HCC, which was significant for the future diagnosis and prognosis of HCC.

5.0
3区
第一作者

Frontiers in molecular biosciences 2022

Causality of Opportunistic Pathogen Klebsiella pneumoniae to Hypertension Development.

BACKGROUND:Previous studies have reported a strong association between gut microbiome and hypertension; yet, the exact bacterial species associated with the disease development and progression have not yet been detected. This study aimed to investigate whether opportunistic pathogen Klebsiella pneumoniae is a causal factor for hypertension pathogenesis, and explore the potential mechanisms.METHODS:The enrichment of Klebsiella pneumoniae in the gut of patients with hypertension was validated by meta-analysis based on 3 independent cohorts. Klebsiella pneumoniae was inoculated into germ-free mice, antibiotic pretreated and conventional mice.RESULTS:Klebsiella pneumoniae led to higher blood pressure, slight cardiac hypertrophy, and enhanced contractility of resistant arteries in recipient mice. Moreover, Klebsiella pneumoniae induced pathological damages, deficiency of tight junction proteins and transcriptional shifts. Metabolic alterations, especially the depletion of stearoylethanolamide, were observed upon Klebsiella pneumoniae administration. In addition, renal transcriptome dysfunction with significant upregulation of genes related to hypertension pathogenesis was observed in Klebsiella pneumoniae treated mice.CONCLUSIONS:These results provide evidence that the enrichment of Klebsiella pneumoniae acts as a direct contributor to blood pressure elevation and hypertension pathogenesis, and Klebsiella pneumoniae induced intestinal damages, fecal metabolic changes, and renal shifts may be integrated mediators.

8.3
1区

Hypertension (Dallas, Tex. : 1979) 2022

Single cell transcriptomic analysis identifies novel vascular smooth muscle subsets under high hydrostatic pressure.

Although some co-risk factors and hemodynamic alterations are involved in hypertension progression, their direct biomechanical effects are unclear. Here, we constructed a high-hydrostatic-pressure cell-culture system to imitate constant hypertension and identified novel molecular classifications of human aortic smooth muscle cells (HASMCs) by single-cell transcriptome analysis. Under 100-mmHg (analogous to healthy human blood pressure) or 200-mmHg (analogous to hypertension) hydrostatic pressure for 48 h, HASMCs showed six distinct vascular SMC (VSMC) clusters according to differential gene expression and gene ontology enrichment analysis. Especially, two novel HASMC subsets were identified, named the inflammatory subset, with CXCL2, CXCL3 and CCL2 as markers, and the endothelial-function inhibitory subset, with AKR1C2, AKR1C3, SERPINF1 as markers. The inflammatory subset promoted CXCL2&3 and CCL2 chemokine expression and secretion, triggering monocyte migration; the endothelial-function inhibitory subset secreted SERPINF1 and accelerated prostaglandin F2α generation to inhibit angiogenesis. The expression of the two VSMC subsets was greatly increased in arterial media from patients with hypertension and experimental animal models of hypertension. Collectively, we identified high hydrostatic pressure directly driving VSMCs into two new subsets, promoting or exacerbating endothelial dysfunction, thereby contributing to the pathogenesis of cardiovascular diseases.

9.1
2区

Science China. Life sciences 2021