安云强

中国医学科学院阜外医院 放射科

Prediction value of pericoronary fat attenuation index for coronary in-stent restenosis.

OBJECTIVES:As a novel imaging marker, pericoronary fat attenuation index (FAI) reflects the local coronary inflammation which is one of the major mechanisms for in-stent restenosis (ISR). We aimed to validate the ability of pericoronary FAI to predict ISR in patients undergoing percutaneous coronary intervention (PCI).MATERIALS AND METHODS:Patients who underwent coronary CT angiography (CCTA) before PCI within 1 week between January 2017 and December 2019 at our hospital and had follow-up invasive coronary angiography (ICA) or CCTA were enrolled. Pericoronary FAI was measured at the site where stents would be placed. ISR was defined as ≥ 50% diameter stenosis at follow-up ICA or CCTA in the in-stent area. Multivariable analysis using mixed effects logistic regression models was performed to test the association between pericoronary FAI and ISR at lesion level.RESULTS:A total of 126 patients with 180 target lesions were included in the study. During 22.5 months of mean interval time from index PCI to follow-up ICA or CCTA, ISR occurred in 40 (22.2%, 40/180) stents. Pericoronary FAI was associated with a higher risk of ISR (adjusted OR = 1.12, p = 0.028). The optimum cutoff was - 69.6 HU. Integrating the dichotomous pericoronary FAI into current state of the art prediction model for ISR improved the prediction ability of the model significantly (△area under the curve =  + 0.064; p = 0.001).CONCLUSION:Pericoronary FAI around lesions with subsequent stent placement is independently associated with ISR and could improve the ability of current prediction model for ISR.CLINICAL RELEVANCE STATEMENT:Pericoronary fat attenuation index can be used to identify the lesions with high risk for in-stent restenosis. These lesions may benefit from extra anti-inflammation treatment to avoid in-stent restenosis.KEY POINTS:• Pericoronary fat attenuation index reflects the local coronary inflammation. • Pericoronary fat attenuation index around lesions with subsequent stents placement can predict in-stent restenosis. • Pericoronary fat attenuation index can be used as a marker for future in-stent restenosis.

5.9
2区

European radiology 2024

Prognostic value of coronary CT angiography for the prediction of all-cause mortality and non-fatal myocardial infarction: a propensity score analysis.

To explore the relationship between comprehensive assessment of coronary atherosclerosis by coronary CT angiography (CCTA) and all-cause mortality and non-fatal myocardial infarction in the Chinese population. Sixty-three patients from the prospective long-term study who experienced major adverse cardiovascular events (MACE) during the follow-up were included. No-MACE patients were 1:1 propensity-matched. Various qualitative and quantitative CCTA parameters, such as coronary artery calcium score (CACS), high-risk plaque, coronary artery disease (CAD) severity, number of obstructive vessels, segment involvement score (SIS), segment stenosis score (SSS), computed tomography-adapt Leaman score (CT-LeSc), and peri-coronary adipose tissue (PCAT) CT attenuation, were compared between both groups. Cox regression analysis was performed to determine the association between CCTA parameters and MACE. The MACE group had higher CACS, more high-risk plaques, more obstructive CAD, more obstructive vessels, higher PCAT CT attenuation, and higher coronary atherosclerotic burden (SIS: 5.76 ± 3.36 vs. 2.84 ± 3.07; SSS: 11.06 ± 8.41 vs. 3.94 ± 4.78; CT-LeSc: 11.25 ± 6.57 vs. 5.49 ± 5.82) than the control group (all p < 0.05). On multivariable analysis, hazard ratios were 1.058 for the SSS (p = 0.004), and 2.152 for the obstructive CAD. When the burden of coronary atherosclerosis was defined as the CT-LeSc, hazard ratios were 1.057 for the CT-LeSc (p = 0.036), and 2.272 for the obstructive CAD. The SSS, CT-LeSc, and presence of obstructive CAD were independently associated with the all-cause mortality and non-fatal myocardial infarction in the suspected CADs in the Chinese population.

2.1
4区

The international journal of cardiovascular imaging 2023

Residual Risk in Non-ST-Segment Elevation Acute Coronary Syndrome: Quantitative Plaque Analysis at Coronary CT Angiography.

Background Lipid-rich plaques detected with intravascular imaging are associated with adverse cardiovascular events in patients with non-ST-segment elevation (NSTE) acute coronary syndrome (ACS). But evidence about the prognostic implication of coronary CT angiography (CCTA) in NSTE ACS is limited. Purpose To assess whether quantitative variables at CCTA that reflect lipid content in nonrevascularized plaques in individuals with NSTE ACS might be predictors of subsequent nonrevascularized plaque-related major adverse cardiovascular events (MACEs). Materials and Methods In this multicenter prospective cohort study, from November 2017 to January 2019, individuals diagnosed with NSTE ACS (excluding those at very high risk) were enrolled and underwent CCTA before invasive coronary angiography (ICA) within 1 day. Lipid core was defined as areas with attenuation less than 30 HU in plaques. MACEs were defined as cardiac death, myocardial infarction, hospitalization for unstable angina, and revascularization. Participants were followed up at 6 months, 12 months, and annually thereafter for at least 3 years (ending by July 2022). Multivariable analysis using Cox proportional hazards regression models was performed to determine the association between lipid core burden, lipid core volume, and future nonrevascularized plaque-related MACEs at both the participant and plaque levels. Results A total of 342 participants (mean age, 57.9 years ± 11.1 [SD]; 263 male) were included for analysis with a median follow-up period of 4.0 years (IQR, 3.6-4.4 years). The 4-year nonrevascularized plaque-related MACE rate was 23.9% (95% CI: 19.1, 28.5). Lipid core burden (hazard ratio [HR], 12.6; 95% CI: 4.6, 34.3) was an independent predictor at the participant level, with an optimum threshold of 2.8%. Lipid core burden (HR, 12.1; 95% CI: 6.6, 22.3) and volume (HR, 11.0; 95% CI: 6.5, 18.4) were independent predictors at the plaque level, with an optimum threshold of 7.2% and 10.1 mm3, respectively. Conclusion In NSTE ACS, quantitative analysis of plaque lipid content at CCTA independently predicted participants and plaques at higher risk for future nonrevascularized plaque-related MACEs. Chinese Clinical Trial Registry no. ChiCTR1800018661 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tavakoli and Duman in this issue.

19.7
1区

Radiology 2023

Angiographic Lesion Morphology Provides Incremental Value to Generalize Quantitative Flow Ratio for Predicting Myocardial Ischemia.

Aim:The quantitative flow ratio (QFR) is favorable for functional assessment of coronary artery stenosis without pressure wires and induction of hyperemia. The aim of this study was to explore whether angiographic lesion morphology provides incremental value to generalize QFR for predicting myocardial ischemia in unselected patients.Methods:This study was a substudy to the CT-FFR CHINA trial, referring 345 participants from five centers with suspected coronary artery disease on coronary CT angiography for diagnostic invasive coronary angiography (ICA). Fractional flow reserve (FFR) was measured in all vessels with 30-90% diameter stenosis. QFR was calculated in 186 lesions from 159 participants in a blinded manner. In addition, parameters to characterize lesion features were recorded or measured, including left anterior descending arteries (LADs)-involved lesions, side branch located at stenotic lesion (BL), multiple lesions (ML), minimal lumen diameter (MLD), reference lumen diameter (RLD), percent diameter stenosis (%DS), lesion length (LL), and LL/MLD4. Logistic regression was used to construct two kinds of models by combining single or two lesion parameters with the QFR. The performances of these models were compared with that of QFR on a per-vessel level.Results:A total of 148 participants (mean age: 59.5 years; 101 men) with 175 coronary arteries were included for final analysis. In total, 81 (46%) vessels were considered hemodynamically significant. QFR correctly classified 82.29% of the vessels using FFR with a cutoff of 0.80 as reference standard. The area under the receiver operating characteristic curve (AUC) of QFR was 0.86 with a sensitivity, specificity, positive predictive value, and negative predictive value of 80.25, 84.04, 81.25, and 83.16%, respectively. The combined models (QFR + LAD + MLD, QFR + LAD + %DS, QFR + BL + MLD, and QFR + BL + %DS) outperformed QFR with higher AUCs (0.91 vs. 0.86, P = 0.02; 0.91 vs. 0.86, P = 0.02; 0.91 vs. 0.86, P = 0.02; 0.90 vs. 0.86, P = 0.03, respectively). Compared with QFR, the sensitivity of the combined models (QFR + BL and QFR + MLD) was improved (91.36 vs. 80.25%, 91.36 vs. 80.25%, respectively, both P < 0.05) without compromised specificity or accuracy.Conclusion:Combined with angiographic lesion parameters, QFR can be optimized for predicting myocardial ischemia in unselected patients.

3.6
3区

Frontiers in cardiovascular medicine 2022

Changes in the renal artery and renal volume and predictors of renal atrophy in patients with complicated type B aortic dissection after thoracic endovascular aortic repair.

Background:For complicated Stanford type B aortic dissection (TBAD), thoracic endovascular aortic repair (TEVAR) is the recommended treatment; however, the type of renal artery that should be repaired remains controversial. The study aimed to investigate the changes in the renal artery and renal volume in complicated TBAD after TEVAR and the predictors of renal atrophy.Methods:The cohort study retrospectively enrolled patients with acute and subacute complicated TBAD who underwent aortic computed tomography angiography (CTA) 1 month before as well as 1 week and half a year after TEVAR from January 2010 to May 2017. According to the source of blood supply shown in preoperative CT, the renal artery was classified in 3 ways: type 1, supplied by the aortic true lumen; type 2, supplied by the aortic false lumen; or type 3, supplied by both the true and false lumen.Results:A total of 91 patients (81 men and 10 women) with an average age of 48.12±10.35 years were enrolled. Renal arteries were classified as type 1 (n=91), type 2 (n=35), and type 3 (n=56). There was no difference in the distribution of the 3 types on the left and right sides (type 1 vs. type 2 vs. type 3: 52:39 vs. 15:20 vs. 24:32; P=0.152). After TEVAR, type 3 was more likely to have spontaneous healing than type 2 (16.1% vs. 2.9%; P=0.049). There was no significant difference in the preoperative volume of kidneys of the 3 types (type 1 vs. type 2 vs. type 3: 198.23±38.68 vs. 197.37±41.77 vs. 195.10±36.11 mL; P=0.893). The postoperative volume of types 2 and 3 was smaller than that of type 1 (type 1 vs. type 2 vs. type 3: 190.09±43.25 vs. 165.15±52.63 vs. 170.70±45.28 mL; P=0.006). The renal volume was reduced in all 3 types of renal artery, especially in type 2 (the change of renal volume for type 1 vs. type 2 vs. type 3: -8.14±29.31 vs. -32.22±41.59 vs. -24.41±38.44 mL; P=0.001). The relative change of renal volume for type 1 vs. type 2 vs. type 3: (-3.64±15.69)% vs. (-16.00±21.29)% vs. (-11.97±18.22)%; P=0.001). During the median follow-up of 668 days, 7 patients (7.7%) belonging to types 2 and 3 developed renal atrophy. False lumen thrombosis in the abdominal aorta and/or the renal artery was the predictor of renal atrophy [hazard ratio (HR) =17.757; P=0.008].Conclusions:Patients with type 2 or 3 renal artery and false lumen thrombosis in the abdominal aorta and/or renal artery should be monitored closely and actively intervened to prevent renal atrophy.

2.8
2区

Quantitative imaging in medicine and surgery 2022

Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis.

OBJECTIVES:To explore whether radiomics-based machine learning (ML) models could outperform conventional diagnostic methods at identifying vulnerable lesions on coronary computed tomographic angiography (CCTA).METHODS:In this retrospective study, 36 heart transplant recipients with coronary heart disease (CAD) and end-stage heart failure were included. Pathological cross-section samples of 350 plaques were collected and coregistered to patients' preoperative CCTA images. A total of 1184 radiomic features were extracted from CCTA images. Through feature selection and stratified fivefold cross-validation, we derived eight radiomics-based ML models for lesion vulnerability prediction. An independent set of 196 plaques from another 8 CAD patients who underwent heart transplants was collected to validate radiomics-based ML models' diagnostic accuracy against conventional CCTA feature-based diagnosis (presence of at least 2 high-risk plaque features). The performance of the prediction models was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI).RESULTS:The training group used to develop radiomics-based ML models contained 200/350 (57.1%) vulnerable plaques and the external validation group was composed of 67.3% (132/196) vulnerable plaques. The radiomics-based ML model based on eight radiomic features showed excellent cross-validation diagnostic accuracy (AUC: 0.900 ± 0.033). In the validation group, diagnosis based on conventional CCTA features demonstrated moderate performance (AUC: 0.656 [95% CI: 0.593 -0.718]), while the radiomics-based ML model showed higher diagnostic ability (0.782 [95% CI: 0.710 -0.846]).CONCLUSIONS:Radiomics-based ML models showed better diagnostic ability than the conventional CCTA features at assessing coronary plaque vulnerability.KEY POINTS:• CCTA has great potential in the diagnosis of vulnerable coronary artery lesions. • Radiomics model built through CCTA could discriminate coronary vulnerable lesions in good diagnostic ability. • Radiomics model could improve the ability of vulnerability diagnosis against traditional CCTA method, sensitivity especially.

5.9
2区

European radiology 2022

Dose Reduction of Dynamic Computed Tomography Myocardial Perfusion Imaging by Tube Voltage Change: Investigation in a Swine Model.

Background:It is unclear whether tube voltage influences the measurement of perfusion parameters. The present study sought to evaluate the influence of tube voltage change on myocardial blood flow (MBF) measurements in dynamic computed tomography myocardial perfusion imaging (CTP).Methods and Results:Seven swine [mean weight 55.8 kg ± 1.6 (standard deviation)] underwent rest and stress dynamic CTP with tube voltages of 100 and 70 kV. The image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), radiation dose and MBF value were compared. The 70 kV images had higher CT attenuation and higher image noise (27.9 ± 2.4 vs. 21.5 ± 1.9, P < 0.001) than the 100 kV images, resulting in a higher SNR (20.5 ± 1.6 vs. 15.6 ± 1.8, P < 0.001) and CNR (17.6 ± 1.5 vs. 12.4 ± 1.7, P < 0.001). Compared to the use of conventional 100 kV, 70 kV yielded an approximately 64.6% radiation dose reduction while generating comparable MBF values, both at rest (88.3 ± 14.9 ml/100 g/min vs. 85.6 ± 17.4 ml/100 g/min, P = 0.21) and stress (101.4 ± 21.5 ml/100 g/min vs. 99.6 ± 21.4 ml/100 g/min, P = 0.58) states.Conclusion:Dynamic CTP using 70 kV instead of 100 kV does not substantially influence the MBF value but significantly reduces the radiation dose. Additional research is required to investigate the clinical significance of this change.

3.6
3区

Frontiers in cardiovascular medicine 2022

Anatomical morphology of the aortic valve in Chinese aortic stenosis patients and clinical results after downsize strategy of transcatheter aortic valve replacement.

BACKGROUND:The study aimed to describe the aortic valve morphology in Chinese patients underwent transcatheter aortic valve replacement (TAVR) for symptomatic severe aortic stenosis (AS), and the impact of sizing strategies and related procedural outcomes.METHODS:Patients with severe AS who underwent TAVR were consecutively enrolled from 2012 to 2019. The anatomy and morphology of the aortic root were assessed. "Downsize" strategy was preformed when patients had complex morphology. The clinical outcomes of patients who performed downsize strategy were compared with those received annular sizing strategy. The primary outcome was device success rate, and secondary outcomes included Valve Academic Research Consortium-3 clinical outcomes variables based on 1-year follow-up.RESULTS:A total of 293 patients were enrolled. Among them, 95 patients (32.4%) had bicuspid aortic valve. The calcium volume (Hounsfield Unit-850) of aortic root was 449.90 (243.15-782.15) mm 3 . Calcium is distributed mostly on the leaflet level. Downsize strategy was performed in 204 patients (69.6%). Compared with the patients who performed annular sizing strategy, those received downsize strategy achieved a similar device success rate (82.0% [73] vs . 83.3% [170], P  = 0.79). Aortic valve gradients (downsize strategy group vs . annular sizing group, 11.28 mmHg vs. 11.88 mmHg, P  = 0.64) and percentages of patients with moderate or severe paravalvular regurgitation 2.0% (4/204) vs . 4.5% (4/89), P  = 0.21) were similar in the two groups at 30 days after TAVR. These echocardiographic results were sustainable for one year.CONCLUSIONS:Chinese TAVR patients have more prevalent bicuspid morphology and large calcium volume of aortic root. Calcium is distributed mostly on the leaflet level. Compare with annular sizing strategy, downsize strategy provided a non-inferior device success rate and transcatheter heart valve hemodynamic performance in self-expanding TAVR procedure.

6.1
3区

Chinese medical journal 2022

Diagnostic Performance of CT FFR With a New Parameter Optimized Computational Fluid Dynamics Algorithm From the CT-FFR-CHINA Trial: Characteristic Analysis of Gray Zone Lesions and Misdiagnosed Lesions.

To assess the diagnostic performance of fractional flow reserve (FFR) derived from coronary computed tomography angiography (CTA) (CT-FFR) obtained by a new computational fluid dynamics (CFD) algorithm to detect ischemia, using FFR as a reference, and analyze the characteristics of "gray zone" and misdiagnosed lesions. This prospective multicenter clinical trial (NCT03692936, https://clinicaltrials.gov/) analyzed 317 patients with coronary stenosis between 30 and 90% in 366 vessels from five centers undergoing CTA and FFR between November 2018 and March 2020. CT-FFR were obtained from a CFD algorithm (Heartcentury Co., Ltd., Beijing, China). Diagnostic performance of CT-FFR and CTA in detecting ischemia was assessed. Coronary atherosclerosis characteristics of gray zone and misdiagnosed lesions were analyzed. Per-vessel sensitivity, specificity and accuracy for CT-FFR and CTA were 89.9, 87.8, 88.8% and 89.3, 35.5, 60.4%, respectively. Accuracy of CT-FFR was 80.0% in gray zone lesions. In gray zone lesions, lumen area and diameter were significantly larger than lesions with FFR < 0.76 (both p < 0.001), lesion length, non-calcified and calcified plaque volume were all significantly higher than non-ischemic lesions (all p < 0.05). In gray zone lesions, Agatston score (OR = 1.009, p = 0.044) was the risk factor of false negative results of CT-FFR. In non-ischemia lesions, coronary stenosis >50% (OR = 2.684, p = 0.03) was the risk factor of false positive results. Lumen area (OR = 0.567, p = 0.02) and diameter (OR = 0.296, p = 0.03) had a significant negative effect on the risk of false positive results of CT-FFR. In conclusion, CT-FFR based on the new parameter-optimized CFD model provides better diagnostic performance for lesion-specific ischemia than CTA. For gray zone lesions, stenosis degree was less than those with FFR < 0.76, and plaque load was heavier than non-ischemic lesions.

3.6
3区

Frontiers in cardiovascular medicine 2022

Unstable plaques hide in heavily calcified coronary arteries.

Background:The napkin-ring sign (NRS) was accepted as unstable plaques at coronary computed tomography angiography (CCTA). However, the incidence is relatively low. We sought to assess whether the newly defined diamond-attenuation-sign [DAS, defined as a qualitative plaque feature in a mixed plaque (MP) on CCTA cross-section images by the presence of two features: a visual calcification (in the shape of a diamond) accompanied by an annular-shape lower attenuation plaque tissue surrounding the lumen like a ring], could be accurately identified as unstable atherosclerotic plaques.Methods:Eight heart transplant recipients (8 male; mean age, 48.5±11.6 years; range, 37-65 years) underwent CCTA exams prior to heart transplant surgery. Segment-based CCTA sections were independently evaluated for various plaque patterns including non-calcified plaque (NCP) with NRS (NCP-NRS), NCP without NRS (NCP-non-NRS), MP with DAS (MP-DAS), MP without DAS sign (MP-non-DAS), and calcified plaque (CP).Results:NCP-NRS plaques in 6.4% (23/358), NCP-non-NRS plaques in 24.0% (86/358), MP-DAS plaques in 18.2% (65/358), MP-non-DAS plaques in 20.1% (72/358), and calcified-plaques in 7.0% (25/358) of all cases. The specificity and positive predictive values of the MP-DAS and NCP-NRS signs to identify unstable plaque features were excellent (97.1% vs. 98.6%, 90.8% vs. 87.0%, respectively). DAS plaques were more frequently seen on CCTA exams than that of NRS (39.3% vs. 13.3%, respectively, P=0.001). The diagnostic performance of MP-DAS to identify unstable coronary lesions was superior compared to NCP-NRS [area under the receiver operating characteristic curve (ROC), 0.756; 95% CI: 0.717-0.791 vs. 0.558; 95% CI: 0.514-0.600, respectively, P<0.001].Conclusions:Both the DAS and NRS had a high specificity and positive predictive value for the presence of unstable lesions. DAS was a better identification of unstable atherosclerotic plaques in the assessment of plaque-calcification-pattern (PCP).

2.8
2区

Quantitative imaging in medicine and surgery 2022