罗颖
中国医学科学院阜外医院深圳医院
Objective.Hematoma expansion is closely associated with adverse functional outcomes in patients with intracerebral hemorrhage (ICH). Prediction of hematoma expansion would therefore be of great clinical significance. We therefore attempted to predict hematoma expansion using a dual-modal machine learning (ML) strategy which combines information from non-contrast computed tomography (NCCT) images and multiple clinical variables.Approach.We retrospectively identified 140 ICH patients (57 with hematoma expansion) with 5616 NCCT images of hematoma (2635 with hematoma expansion) and 10 clinical variables. The dual-modal ML strategy consists of two steps. The first step is to derive a mono-modal predictor from a deep convolutional neural network using solely NCCT images. The second step is to achieve a dual-modal predictor by combining the mono-modal predictor with 10 clinical variables to predict hematoma growth using a multi-layer perception network.Main results. For the mono-modal predictor, the best performance was merely 69.5% in accuracy with solely the NCCT images, whereas the dual-modal predictor could boost the accuracy greatly to be 86.5% by combining clinical variables.Significance.To our knowledge, this is the best performance from using ML to predict hematoma expansion. It could be potentially useful as a screening tool for high-risk patients with ICH, though further clinical tests would be necessary to show its performance on a larger cohort of patients.
Physiological measurement 2021
Ischemia-reperfusion (I/R) injury is a multifactorial process triggered when an organ is subjected to transiently reduced blood supply. The result is a cascade of pathological complications and organ damage due to the production of reactive oxygen species following reperfusion. The present study aims to evaluate the role of activated calcium-sensing receptor (CaR)-cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway in I/R injury. Firstly, an I/R rat model with CSE knockout was constructed. Transthoracic echocardiography, TTC and HE staining were performed to determine the cardiac function of rats following I/R Injury, followed by TUNEL staining observation on apoptosis. Besides, with the attempt to better elucidate how CaR-CSE/H2S affects I/R, in-vitro culture of human coronary artery endothelial cells (HCAECs) was conducted with gadolinium chloride (GdCl3, a CaR agonist), H2O2, siRNA against CSE (siCSE), or W7 (a CaM inhibitor). The interaction between CSE and CaM was subsequently detected. Plasma oxidative stress indexes, H2S and CSE, and apoptosis-related proteins were all analyzed following cell apoptosis. We found that H2S elevation led to the improvement whereas CSE knockdown decreased cardiac function in rats with I/R injury. Moreover, oxidative stress injury in I/R rats with CSE knockout was aggravated, while the increased expression of H2S and CSE in the aortic tissues resulted in alleviated the oxidative stress injury. Moreover, increased H2S and CSE levels were found to inhibit cell apoptotic ability in the aortic tissues after I/R injury, thus attenuating oxidative stress injury, accompanied by inhibited expression of apoptosis-related proteins. In HCAECs following oxidative stress treatment, siCSE and CaM inhibitor were observed to reverse the protection of CaR agonist. Coimmunoprecipitation assay revealed the interaction between CSE and CaM. Taken together, all above-mentioned data provides evidence that activation of the CaR-CSE/H2S pathway may confer a potent protective effect in cardiac I/R injury.
Experimental cell research 2021