贺春晖

中国医学科学院阜外医院 心血管内科

FOXO3a functions as a transcriptional and co-transcriptional splicing regulator in vascular endothelial cell lines.

Recent studies have indicated a connection between Forkhead box O3a protein and coronary artery disease, yet the exact role of FOXO3a in the regulation of metabolic processes and apoptosis in vascular endothelial cells is still unknown. Therefore, we investigated the role of FOXO3a on target genes in a human vascular endothelial cell line. Through the utilization of high-throughput sequencing technology, we analyzed gene expression profiles and alternative splicing patterns in human vascular endothelial cells with FOXO3a over expression. This study identified 419 DEGs between FOXO3a-OE HUVEC model and control cells. KEGG analysis indicated that the upregulated genes were mainly enriched in inflammation-related signaling pathways, and the downregulated genes were enriched in lipid metabolism-related pathways.

3.5
3区

Gene 2024

Comparative effectiveness and safety of bolus vs. continuous infusion of loop diuretics: Results from the MIMIC-III Database.

BACKGROUND:It is unclear whether fluid management goals are best achieved by bolus injection or continuous infusion of loop diuretics. In this study, we compared the effectiveness and safety of a continuous infusion with that of a bolus injection when an increased loop diuretic dosage is required in intensive care unit (ICU) patients.METHODS:We obtained data from the MIMIC-III database for patients who were first-time ICU admissions and required an increased diuretic dosage. Patients were excluded if they had an estimated glomerular filtration rate <15 ml/min/1.73 m2, were receiving renal replacement therapy, had a baseline systolic blood pressure <80 mmHg, or required a furosemide dose <120 mg. The patients were divided into a continuous group and a bolus group. Propensity score matching was used to balance patients' background characteristics.RESULTS:The final dataset included 807 patients (continuous group, n = 409; bolus group, n = 398). After propensity score matching, there were 253 patients in the bolus group and 231 in the continuous group. The 24 h urine output per 40 mg of furosemide was significantly greater in the continuous group than in the bolus group (234.66 ml [95% confidence interval (CI) 152.13-317.18, p < 0.01]). There was no significant between-group difference in the incidence of acute kidney injury (odds ratio 0.96, 95% CI 0.66-1.41, p = 0.85).CONCLUSIONS:Our results indicate that a continuous infusion of loop diuretics may be more effective than a bolus injection and does not increase the risk of acute kidney injury in patients who need an increased diuretic dosage in the ICU.

3.1
4区

The American journal of the medical sciences 2023

Focus on HFpEF in heart failure.

6.1
3区
第一作者

Chinese medical journal 2022

Nicorandil attenuates high glucose-induced insulin resistance by suppressing oxidative stress-mediated ER stress PERK signaling pathway.

INTRODUCTION:Glucose-induced insulin resistance is a typical character of diabetes. Nicorandil is now widely used in ischemic heart disease. Nicorandil shows protective effects against oxidative and endoplasmic reticulum (ER) stress, which are involved in insulin resistance. Here, we investigated mechanisms of nicorandil's novel pharmacological activity on insulin resistance in diabetes.RESEARCH DESIGN AND METHODS:Nicorandil was administrated to streptozotocin-induced animals with diabetes and high glucose exposed skeletal muscle cells. Insulin resistance and glucose tolerance were evaluated. Molecular mechanisms concerning oxidative stress, ER stress signaling activation and glucose uptake were assessed.RESULTS:Nicorandil attenuated high glucose-induced insulin resistance without affecting fasting blood glucose and glucose tolerance in whole body and skeletal muscle in rats with diabetes. Nicorandil treatment suppressed protein kinase C/nicotinamide adenine dinucleotide phosphate oxidases system activities by reducing cytoplasmic free calcium level in skeletal muscle cells exposed to high glucose. As a result, the oxidative stress-mediated ER stress protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α/activating transcription factor 4/CEBP homologous protein/tribbles homolog (TRB)3 signaling pathway activation was inhibited. Nicorandil downregulated expression of TRB3 and thus facilitated Akt phosphorylation in response to insulin stimulation, leading to glucose transporter4 plasma membrane translocation which promoted glucose uptake capability of skeletal muscle cells.CONCLUSIONS:By reducing cytoplasmic calcium, nicorandil alleviated high glucose-induced insulin resistance by inhibiting oxidative stress-mediated ER stress PERK pathway.

4.1
2区

BMJ open diabetes research & care 2021

Rivaroxaban Suppresses Atherosclerosis by Inhibiting FXa-Induced Macrophage M1 Polarization-Mediated Phenotypic Conversion of Vascular Smooth Muscle Cells.

Background: Factor Xa (FXa) is a mediator initiating and accelerating atherosclerosis (AS). Both macrophage and vascular smooth muscle cells (VSMCs) participate in AS progression. This study was aimed to investigate the mechanisms underlying the effects of the FXa inhibitor rivaroxaban on AS. Methods: Rivaroxaban was administered to AS mice. Primary macrophages were exposed to FXa, treated with rivaroxaban, and transfected with siRNA silencing protease-activated receptor 2 (PAR2), hypoxia-inducible factor 1α (HIF1α), delta-like receptor 4 (Dll4), and Akt. Interaction between macrophages and VSMCs was assessed by co-culturing systems. Atherosclerotic lesions were evaluated by oil red O stain. Fluorescent staining was used to determine the cell phenotypes. Secretions of inflammatory cytokines and collagen were assessed by ELISA and Sircol assays. Western blotting was used to evaluate the protein expression and phosphorylation levels. Results: Rivaroxaban reduced lesion area, accumulation of M1 macrophages, and contractile-synthetic phenotypic conversion of VSMCs in atherosclerotic plaques. FXa exposure induced polarization of macrophages toward M1 and Dll4 high expression, which were inhibited by PAR2, Akt1, and HIF1α silencing. Rivaroxaban treatment inhibited PAR2/Akt/HIF1α signaling activation and Dll4 expression in FXa-exposed macrophages. By cell-to-cell contact, M1 macrophages induced Notch signaling activation in VSMCs which committed contractile-synthetic conversion. Rivaroxaban treatment and Dll4 silencing incapacitated macrophage in inducing phenotypic conversion of VSMCs upon cell-to-cell contact. Conclusion: Rivaroxaban suppresses AS by inhibiting FXa-induced PAR2/Akt/HIF1α signaling activation-mediated macrophage M1 polarization and high Dll4 expression. These macrophages facilitated VSMCs to perform contractile-synthetic phenotypic conversion upon macrophage-VSMCs cell-to-cell contact.

3.6
3区

Frontiers in cardiovascular medicine 2021

Toll-like receptor 4 plays a key role in advanced glycation end products-induced M1 macrophage polarization.

OBJECTIVE:This study was aimed to investigate the role of Toll-like receptor 4 (TLR4) in advanced glycation end products (AGEs)- induced macrophage polarization toward M1.METHODS:Isolated primary macrophages were exposed to prepared AGEs at concentrations of 0, 2.5, 5 and 10 μmol/L. Macrophages were also exposed to hydrogen peroxide (H2O2) which provided exogenous reactive oxygen species (ROS). Receptor for AGEs (RAGE) was over-expressed by a vector. Specific siRNA silencing TLR4 and inhibitor TAK-242 were used to pre-treat the macrophages. Intracellular ROS was determined by DCFH-DA. Immunofluorescence staining was used to evaluate the expression of inducible nitric oxide synthase (iNOS) which is the marker of M1 macrophage phenotype. Real-time PCR was used to assess the mRNA expression level of TLR4 and RAGE. Protein expression levels of cytoplasmic RAGE, TLR4, nuclear signal transducers and activators of transcription 1 (STAT1) and phosphorylation levels of cytoplasmic STAT1 were evaluated by Western blotting. ELISA was used to measure concentrations of interleukin 6 (IL6), IL12 and tumor necrosis factor (TNF)α in supernatant of cell culture medium of macrophages.RESULTS:AGEs significantly elevated intracellular ROS generation, expression levels of iNOS, cytoplasmic RAGE, TLR4, nuclear STAT1, phosphorylation levels of cytoplasmic STAT1, as well as IL6, IL12 and TNFα contents in a concentration-dependent manner. TLR4 silencing and inhibitor pre-treatment reduced expression levels of cytoplasmic RAGE, TLR4, phosphorylation of STAT1 and nuclear STAT1 in AGEs-exposed macrophages without affecting RAGE expression and intracellular ROS production levels. RAGE over-expression elevated both ROS and TLR4 expression levels in macrophages. TLR4 expression elevation was also found in H2O2-treat macrophages.CONCLUSION:AGEs induced macrophage polarization toward M1 via activating RAGE/ROS/TLR4/STAT1 signaling pathway.

3.1
3区

Biochemical and biophysical research communications 2020