程晓雷

南京鼓楼医院 麻醉科

Mitochondria-targeting nanozyme alleviating temporomandibular joint pain by inhibiting the TNFα/NF-κB/NEAT1 pathway.

Inflammatory cytokines that are secreted into the spinal trigeminal nucleus caudalis (Sp5C) may augment inflammation and cause pain associated with temporomandibular joint disorders (TMD). In a two-step process, we attached triphenylphosphonium (TPP) to the surface of a cubic liposome metal-organic framework (MOF) loaded with ruthenium (Ru) nanozyme. The design targeted mitochondria and was designated Mito-Ru MOF. This structure scavenges free radicals and reactive oxygen species (ROS) and alleviates oxidative stress. The present study aimed to investigate the effects and mechanisms by which Mito-Ru MOF ameliorates TMD pain. Intra-temporomandibular joint (TMJ) injections of complete Freund's adjuvant (CFA) induced inflammatory pain for ≥10 d in the skin areas innervated by the trigeminal nerve. Tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1), and ROS also have been proved to be significantly upregulated in the Sp5C of TMD mice. Moreover, a single Mito-Ru MOF treatment alleviated TMD pain for 3 d and downregulated TNF-α, NF-κB, lncRNA NEAT1, and ROS. NF-κB knockdown downregulated NEAT1 in the TMD mice. Hence, Mito-Ru MOF inhibited the production of ROS and alleviated CFA-induced TMD pain via the TNF-α/NF-κB/NEAT1 pathway. Therefore, Mito-Ru MOF could effectively treat the pain related to TMD and other conditions associated with severe acute inflammatory activation.

7.0
3区

Journal of materials chemistry. B 2023

Circulating cardiac MicroRNAs safeguard against dilated cardiomyopathy.

BACKGROUND:Cardiac-resident or -enriched microRNAs (miRNAs) could be released into the bloodstream becoming circulating cardiac miRNAs, which are increasingly recognized as non-invasive and accessible biomarkers of multiple heart diseases. However, dilated cardiomyopathy (DCM)-associated circulating miRNAs (DACMs) and their roles in DCM pathogenesis remain largely unexplored.METHODS:Two human cohorts, consisting of healthy individuals and DCM patients, were enrolled for serum miRNA sequencing (10 vs. 10) and quantitative polymerase chain reaction validation (46 vs. 54), respectively. Rigorous screening strategy was enacted to define DACMs and their potentials for diagnosis. DCM mouse model, different sources of cardiomyocytes, adeno-associated virus 9 (AAV9), gene knockout, RNAscope miRNA in situ hybridization, mRFP-GFP-LC3B reporter, echocardiography and transmission electron microscopy were adopted for mechanistic explorations.RESULTS:Serum miRNA sequencing revealed a unique expression pattern for DCM circulating miRNAs. DACMs miR-26a-5p, miR-30c-5p, miR-126-5p and miR-126-3p were found to be depleted in DCM circulation as well as heart tissues. Their expressions in circulation and heart tissues were proven to be correlated significantly, and a combination of these miRNAs was suggested potential values for DCM diagnosis. FOXO3, a predicted common target, was experimentally demonstrated to be co-repressed within cardiomyocytes by these DACMs except miR-26a-5p. Delivery of a combination of miR-30c-5p, miR-126-5p and miR-126-3p into the murine myocardium via AAV9 carrying an expression cassette driven by cTnT promoter, or cardiac-specific knockout of FOXO3 (Myh6-CreERT2 , FOXO3 flox+/+ ) dramatically attenuated cardiac apoptosis and autophagy involved in DCM progression. Moreover, competitively disrupting the interplay between DACMs and FOXO3 mRNA by specifically introducing their interacting regions into murine myocardium crippled the cardioprotection of DACMs against DCM.CONCLUSIONS:Circulating cardiac miRNA-FOXO3 axis plays a pivotal role in safeguarding against myocardial apoptosis and excessive autophagy in DCM development, which may provide serological cues for DCM non-invasive diagnosis and shed light on DCM pathogenesis and therapeutic targets.

10.6
1区
第一作者

Clinical and translational medicine 2023

Correction: Mitochondria-targeting nanozyme alleviating temporomandibular joint pain by inhibiting the TNFα/NF-κB/NEAT1 pathway.

Correction for 'Mitochondria-targeting nanozyme alleviating temporomandibular joint pain by inhibiting the TNFα/NF-κB/NEAT1 pathway' by Qian Bai et al., J. Mater. Chem. B, 2023, https://doi.org/10.1039/d3tb00929g.

7.0
3区

Journal of materials chemistry. B 2023

CIRBP-OGFR axis safeguards against cardiomyocyte apoptosis and cardiotoxicity induced by chemotherapy.

Cold-inducible RNA-binding protein (CIRBP) is documented to be required for maintaining cardiac function, however, its role in chemotherapy-induced cardiotoxicity remains obscured. Herein, we report that CIRBP decreases cardiomyocyte apoptosis and attenuates cardiotoxicity through disrupting OGF-OGFR signal. CIRBP deficiency is involved in diverse chemotherapeutic agents induced cardiomyocyte apoptosis. Delivery of exogenous CIRBP to the mouse myocardium significantly mitigated doxorubicin-induced cardiac apoptosis and dysfunction. Specifically, OGFR was identified as a downstream core effector responsible for chemotherapy-induced cardiomyocyte apoptosis. CIRBP was shown to interact with OGFR mRNA and to repress OGFR expression by reducing mRNA stability. CIRBP-mediated cytoprotection against doxorubicin-induced cardiac apoptosis was demonstrated to largely involve OGFR repression by CIRBP. NTX as a potent antagonist of OGFR successfully rescued CIRBP ablation-rendered susceptibility to cardiac dyshomeostasis upon exposure to doxorubicin, whereas another antagonist ALV acting only on opioid receptors did not. Taken together, our results demonstrate that CIRBP confers myocardium resistance to chemotherapy-induced cardiac apoptosis and dysfunction by dampening OGF/OGFR axis, shedding new light on the mechanisms of chemo-induced cardiotoxicity and providing insights into the development of an efficacious cardioprotective strategy for cancer patients.

9.2
2区

International journal of biological sciences 2022

Fusobacterium nucleatum predicts a high risk of metastasis for esophageal squamous cell carcinoma.

BACKGROUND:Esophageal squamous cell carcinoma (ESCC) is the major type of esophageal cancer in China. The role of the bacteria present in ESCC tissue in neoplastic progression has not been fully elucidated. This study aimed to uncover different bacterial communities in ESCC tissues and examine the correlation between the abundance of the esophageal flora and clinicopathologic characteristics of ESCC.RESULTS:Microorganisms in tumors and normal tissues showed obvious clustering characteristics. The abundance of Fusobacterium (P = 0.0052) was increased in tumor tissues. The high level of Fusobacterium nucleatum was significantly associated with pT stage (P = 0.039) and clinical stage (P = 0.0039). The WES data showed that COL22A1, TRBV10-1, CSMD3, SCN7A and PSG11 were present in only the F. nucleatum-positive ESCC samples. GO and protein domain enrichment results suggested that epidermal growth factor might be involved in the regulation of cell apoptosis in F. nucleatum-positive ESCC. Both a higher mutational burden and F. nucleatum-positive was observed in tumors with metastasis than in tumors without metastasis.CONCLUSION:F. nucleatum is closely related to the pT stage and clinical stage of ESCC. The abundance of F. nucleatum and tumor mutation burden may be used in combination as a potential method to predict metastasis in ESCC.

4.2
2区

BMC microbiology 2021