马静雯
中国医学科学院 放射科
Objectives:Patients with epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma (LUAD) can benefit from individualized targeted therapy. This study aims to develop, compare, analyse prediction models based on dual-energy spectral computed tomography (DESCT) and CT-based radiomic features to non-invasively predict EGFR mutation status in LUAD.Materials and methods:Patients with LUAD (n = 175), including 111 patients with and 64 patients without EGFR mutations, were enrolled in the current study. All patients were randomly divided into a training dataset (122 cases) and validation dataset (53 cases) at a ratio of 7:3. After extracting CT-based radiomic, DESCT and clinical features, we built seven prediction models and a nomogram of the best prediction. Receiver operating characteristic (ROC) curves and the mean area under the curve (AUC) values were used for comparisons among the models to obtain the best prediction model for predicting EGFR mutations.Results:The best distinguishing ability is the combined model incorporating radiomic, DESCT and clinical features for predicting the EGFR mutation status with an AUC of 0.86 (95 % CI: 0.79-0.92) in the training group and an AUC value of 0.83 (95 % CI: 0.73, 0.96) in the validation group.Conclusions:Our study provides a predictive nomogram non-invasively with a combination of CT-based radiomic, DESCT and clinical features, which can provide image-based biological information for targeted therapy of LUAD with EGFR mutations.
Heliyon 2024
OBJECTIVES:As a novel imaging marker, pericoronary fat attenuation index (FAI) reflects the local coronary inflammation which is one of the major mechanisms for in-stent restenosis (ISR). We aimed to validate the ability of pericoronary FAI to predict ISR in patients undergoing percutaneous coronary intervention (PCI).MATERIALS AND METHODS:Patients who underwent coronary CT angiography (CCTA) before PCI within 1 week between January 2017 and December 2019 at our hospital and had follow-up invasive coronary angiography (ICA) or CCTA were enrolled. Pericoronary FAI was measured at the site where stents would be placed. ISR was defined as ≥ 50% diameter stenosis at follow-up ICA or CCTA in the in-stent area. Multivariable analysis using mixed effects logistic regression models was performed to test the association between pericoronary FAI and ISR at lesion level.RESULTS:A total of 126 patients with 180 target lesions were included in the study. During 22.5 months of mean interval time from index PCI to follow-up ICA or CCTA, ISR occurred in 40 (22.2%, 40/180) stents. Pericoronary FAI was associated with a higher risk of ISR (adjusted OR = 1.12, p = 0.028). The optimum cutoff was - 69.6 HU. Integrating the dichotomous pericoronary FAI into current state of the art prediction model for ISR improved the prediction ability of the model significantly (△area under the curve = + 0.064; p = 0.001).CONCLUSION:Pericoronary FAI around lesions with subsequent stent placement is independently associated with ISR and could improve the ability of current prediction model for ISR.CLINICAL RELEVANCE STATEMENT:Pericoronary fat attenuation index can be used to identify the lesions with high risk for in-stent restenosis. These lesions may benefit from extra anti-inflammation treatment to avoid in-stent restenosis.KEY POINTS:• Pericoronary fat attenuation index reflects the local coronary inflammation. • Pericoronary fat attenuation index around lesions with subsequent stents placement can predict in-stent restenosis. • Pericoronary fat attenuation index can be used as a marker for future in-stent restenosis.
European radiology 2024
Background Lipid-rich plaques detected with intravascular imaging are associated with adverse cardiovascular events in patients with non-ST-segment elevation (NSTE) acute coronary syndrome (ACS). But evidence about the prognostic implication of coronary CT angiography (CCTA) in NSTE ACS is limited. Purpose To assess whether quantitative variables at CCTA that reflect lipid content in nonrevascularized plaques in individuals with NSTE ACS might be predictors of subsequent nonrevascularized plaque-related major adverse cardiovascular events (MACEs). Materials and Methods In this multicenter prospective cohort study, from November 2017 to January 2019, individuals diagnosed with NSTE ACS (excluding those at very high risk) were enrolled and underwent CCTA before invasive coronary angiography (ICA) within 1 day. Lipid core was defined as areas with attenuation less than 30 HU in plaques. MACEs were defined as cardiac death, myocardial infarction, hospitalization for unstable angina, and revascularization. Participants were followed up at 6 months, 12 months, and annually thereafter for at least 3 years (ending by July 2022). Multivariable analysis using Cox proportional hazards regression models was performed to determine the association between lipid core burden, lipid core volume, and future nonrevascularized plaque-related MACEs at both the participant and plaque levels. Results A total of 342 participants (mean age, 57.9 years ± 11.1 [SD]; 263 male) were included for analysis with a median follow-up period of 4.0 years (IQR, 3.6-4.4 years). The 4-year nonrevascularized plaque-related MACE rate was 23.9% (95% CI: 19.1, 28.5). Lipid core burden (hazard ratio [HR], 12.6; 95% CI: 4.6, 34.3) was an independent predictor at the participant level, with an optimum threshold of 2.8%. Lipid core burden (HR, 12.1; 95% CI: 6.6, 22.3) and volume (HR, 11.0; 95% CI: 6.5, 18.4) were independent predictors at the plaque level, with an optimum threshold of 7.2% and 10.1 mm3, respectively. Conclusion In NSTE ACS, quantitative analysis of plaque lipid content at CCTA independently predicted participants and plaques at higher risk for future nonrevascularized plaque-related MACEs. Chinese Clinical Trial Registry no. ChiCTR1800018661 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tavakoli and Duman in this issue.
Radiology 2023