陆国庆
阜外华中心血管病医院 心血管外科
Background:Genome-wide association studies for various hemorheological characteristics have not been reported. We aimed to identify genetic loci associated with hemorheological indexes in a cohort of healthy Chinese Han individuals.Methods:Genotyping was performed using Applied Biosystems Axiom™ Precision Medicine Diversity Array in 838 individuals, and 6,423,076 single nucleotide polymorphisms were available for genotyping. The relations were examined in an additive genetic model using mixed linear regression and combined with identical by descent matrix.Results:We identified 38 genetic loci (p < 5 × 10-6) related to hemorheological traits. In which, LOC102724502-OLIG2 rs28371438 was related to the levels of nd30 (p = 8.58 × 10-07), nd300 (p = 1.89 × 10-06), erythrocyte rigidity (p = 1.29 × 10-06), assigned viscosity (p = 6.20 × 10-08) and whole blood high cut relative (p = 7.30 × 10-08). The association of STK32B rs4689231 for nd30 (p = 3.85 × 10-06) and nd300 (p = 2.94 × 10-06) and GTSCR1-LINC01541 rs11661911 for erythrocyte rigidity (p = 9.93 × 10-09) and whole blood high cut relative (p = 2.09 × 10-07) was found. USP25-MIR99AHG rs1297329 was associated with erythrocyte rigidity (p = 1.81 × 10-06) and erythrocyte deformation (p = 1.14 × 10-06). Moreover, the association of TMEM232-SLC25A46 rs3985087 and LINC00470-METTL4 rs9966987 for fibrinogen (p = 1.31 × 10-06 and p = 4.29 × 10-07) and plasma viscosity (p = 1.01 × 10-06 and p = 4.59 × 10-07) was found.Conclusion:These findings may represent biological candidates for hemorheological indexes and contribute to hemorheological study.
Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie 2022
The prevention and treatment of coronary heart disease (CHD) is a difficult problem to be solved urgently. Genetic factors play a crucial role in CHD development. This study aimed to investigate the association of GAS5/METTL14/ESR1 polymorphisms with CHD susceptibility. We carried out a case-control study that included 506 patients and 506 healthy subjects to detect the correlation between GAS5/METTL14/ESR1 polymorphisms and CHD risk in a Chinese population. Odds ratios (OR) and 95% confidence intervals (CI) were computed to assess the associations. Our study showed that GAS5 rs17359906 (OR 2.32, p = 0.020) and rs75315904 (OR 0.41, p = 0.039) were related to the risk of CHD in females. ESR1 rs6927072 (OR 1.76, p = 0.007) and rs4870061 (OR 0.74, p = 0.036) correlated with CHD risk in age ≤ 60 years. GAS5 rs17359906 (OR 0.10, p = 0.032) and ESR1 rs3020308 (OR 2.73, p = 0.041) were associated with an increased susceptibility to CHD in smokers. We also found that METTL14 rs4834698 (OR 1.57, p = 0.044) and ESR1 rs4870061 (OR 0.62, p = 0.040) were associated with CHD susceptibility in non-drinkers. Besides, METTL14 rs17050450 (OR 0.48, p = 0.029) and ESR1 rs3853248 (OR 1.61, p = 0.018) had the susceptibility of CHD patients with diabetes. Our study indicated that GAS5/METTL14/ESR1 polymorphisms were associated with CHD risk, which might provide a new understanding of CHD in a Chinese population.
Functional & integrative genomics 2022
Objective:Long noncoding RNAs (lncRNAs), including some members of small nucleolar RNA host gene (SNHG), are important regulators in myocardial injury, while the role of SNHG4 in myocardial infarction (MI) is rarely known. This study is aimed at exploring the regulatory role and mechanisms of SNHG4 on MI.Methods:Cellular and rat models of MI were established. The expression of relating genes was measured by qRT-PCR and/or western blot. In vitro, cell viability was detected by MTT assay, and cell apoptosis was assessed by caspase-3 level, Bax/Bcl-2 expression, and/or flow cytometry. The inflammation was evaluated by TNF-α, IL-1β, and IL-6 levels. The myocardial injury in MI rats was evaluated by echocardiography, TTC/HE/MASSON/TUNEL staining, and immunohistochemistry (Ki67). DLR assay was performed to confirm the target relationships.Results:SNHG4 was downregulated in hypoxia-induced H9c2 cells and MI rats, and its overexpression enhanced cell viability and inhibited cell apoptosis and inflammation both in vitro and in vivo. SNHG4 overexpression also decreased infarct and fibrosis areas, relieved pathological changes, and improved heart function in MI rats. In addition, miR-148b-3p was an action target of SNHG4, and its silencing exhibited consistent results with SNHG4 overexpression in vitro. DUSP1 was a target of miR-148b-3p, which inhibited the apoptosis of hypoxia-induced H9c2 cells. Both miR-148b-3p overexpression and DUSP1 silencing weakened the effects of SNHG4 overexpression on protecting H9c2 cells against hypoxia.Conclusions:Overexpression of SNHG4 relieved MI through regulating miR-148b-3p/DUSP1, providing potential therapeutic targets.
Cardiovascular therapeutics 2022
BACKGROUND AND OBJECTIVE:The incidence of atrial fibrillation is increasing annually. We develop an automatic detection system, which is of great significance for the early detection and treatment of atrial fibrillation. This can lead to the reduction of the incidence of critical illnesses and mortality.METHODS:We propose an atrial fibrillation detection algorithm based on multi-feature extraction and convolutional neural network of atrial activity via electrocardiograph signals, and compare its detection based on cluster analysis, one-versus-one rule and support vector machine, using accuracy, specificity, sensitivity and true positive rate as evaluation criteria.RESULTS:The atrial fibrillation detection algorithm proposed in this paper has an accuracy rate of 98.92%, a specificity of 97.04%, a sensitivity of 97.19%, and a true positive rate of 96.47%. The average accuracy of the algorithms we compared is 80.26%, and the accuracy of our algorithm is 23.25% higher than this average pertaining to the other algorithms.CONCLUSION:We implemented an atrial fibrillation detection algorithm that meets the requirements of high accuracy, robustness and generalization ability. It has important clinical and social significance for early detection of atrial fibrillation, improvement of patient treatment plans and improvement of medical diagnosis.
Computer methods and programs in biomedicine 2021
PURPOSE:Coronary artery disease (CAD) is known to have high prevalence, high disability and mortality. The incidence and mortality of cardiovascular disease are also gradually increasing worldwide. Therefore, our paper proposes to use a more efficient image processing method to extract accurate vascular structures from vascular images by combining computer vision and deep learning.METHOD:Our proposed segmentation of coronary angiography images based on PSPNet network was compared with FCN, and analyzed and discussed the experimental results using three evaluation indicators of precision, recall and Fl-score. Aiming at the complex and changeable structure of coronary angiography images and over-fitting or parameter structure destruction, we implemented the parallel multi-scale convolutional neural network model using PSPNet, using small sample transfer learning that limits parameter learning method.RESULTS:The accuracy of our technique proposed in this paper is 0.957. The accuracy of PSPNet is 26.75% higher than the traditional algorithm and 4.59% higher than U-Net. The average segmentation accuracy of the PSPNet model using transfer learning on the test set increased from 0.926 to 0.936, the sensitivity increased from 0.846 to 0.865, and the specificity increased from 0.921 to 0.949. The segmentation effect in this paper is closest to the segmentation result of the human expert, and is smoother than that of U-Net segmentation.CONCLUSION:The PSPNet network reduces manual interaction in diagnosis, reduces dependence on medical personnel, improves the efficiency of disease diagnosis, and provides auxiliary strategies for subsequent medical diagnosis systems based on cardiac coronary angiography.
Computer methods and programs in biomedicine 2021
Cyanotic congenital heart disease (CCHD) is the main cause of death in infants worldwide. Long noncoding RNAs (lncRNAs) have been pointed to exert crucial roles in development of CHD. The current research is designed to illuminate the impact and potential mechanism of lncRNA SNHG14 in CCHD in vitro. The embryonic rat ventricular myocardial cells (H9c2 cells) were exposed to hypoxia to establish the model of CCHD in vitro. Quantitative real-time polymerase chain reaction was conducted to examine relative expressions of SNHG14, miR-25-3p, and KLF4. Cell viability was determined by the MTT assay. Lactate dehydrogenase (LDH) was measured by an LDH assay kit. Apoptosis-related proteins (Bax and Bcl-2) and KLF4 were detected by Western Blot. The targets of SNHG14 and miR-25-3p were verified by the dual-luciferase reporter assay. SNHG14 and KLF4 were upregulated, whereas miR-25-3p was downregulated in hypoxia-induced H9c2 cells and cardiac tissues of patients with CCHD compared with their controls. Knockdown of SNHG14 or overexpression of miR-25-3p facilitated cell viability, while depressing cell apoptosis and release of LDH in hypoxia-induced H9c2 cells. MiR-25-3p was a target of SNHG14 and inversely modulated by SNHG14. MiR-25-3p could directly target KLF4 and negatively regulate expression of KLF4. Repression of miR-25-3p or overexpression of KLF4 reversed the suppression impacts of sh-SNHG14 on cell apoptosis and release of LDH as well as the promotion impact of sh-SNHG14 on cell viability in hypoxia-induced H9c2 cells. Sh-SNHG14 protected H9c2 cells against hypoxia-induced injury by modulating miR-25-3p/KLF4 axis in vitro.
Journal of cardiovascular pharmacology 2021
BACKGROUND:Hypoxia/reoxygenation (H/R)-mediated apoptosis and inflammation are major causes of tissue injury in acute myocardial infarction (AMI). Exploring the underlying mechanisms of cardiomyocyte injury induced by H/R is important for AMI treatment. Circular RNAs have been demonstrated to paly vital roles in the pathogenesis of AMI. Our study aimed to explore the function of circular RNA UBXN7 (circUBXN7) in regulating H/R-induced cardiomyocyte injury.METHODS:H/R-treated H9c2 cells and a mouse model of AMI were used to investigate the function of circUBXN7 in H/R damage and AMI. The expressions of circUNXN7, miR-622 and MCL1 were analyzed by RT-qPCR. CCK-8 was used for examining cell viability. Cell apoptosis was evaluated with caspase 3 activity and Annexin V/PI staining. MCL1, Bax, Bcl-2 and cleaved-caspase 3 were examined with western blot. ELISA was used to examine the secretion of IL-6, TNF-α and IL-1β.RESULTS:CircUBXN7 was downregulated in patients and mice with AMI, as well as in H/R-treated cells. Overexpression of circUBXN7 mitigated H/R-mediated apoptosis and secretion of inflammatory factors including IL-6, TNF-α and IL-1β. CircUBXN7 suppressed cell apoptosis and inflammatory reaction induced by H/R via targeting miR-622. MiR-622 targeted MCL1 to restrain its expression in H9c2 cells. Knockdown of MCL1 abrogated circUBXN7-mediated alleviation of apoptosis and inflammation after H/R treatment.CONCLUSION:CircUBXN7 mitigates cardiomyocyte apoptosis and inflammatory reaction in H/R injury by targeting miR-622 and maintaining MCL1 expression. Our study provides novel potential therapeutic targets for AMI treatment.
American journal of translational research 2021