马杰

中国医学科学院阜外医院 中医科

Angiographic microvascular resistance in patients with obstructive hypertrophic cardiomyopathy.

BACKGROUND:Coronary microvascular dysfunction (CMD) is an important feature of obstructive hypertrophic cardiomyopathy (oHCM). Angiographic microvascular resistance (AMR) offers a potent means for assessing CMD. This study sought to evaluate the prognostic value of CMD burden calculated by AMR among oHCM patients.METHODS:We retrospectively screened all patients diagnosed with oHCM from Fuwai Hospital between January 2017 and November 2021. Off-line AMR assessments were performed for all 3 major coronary vessels by the independent imaging core laboratory. Patients were followed every 6 months post discharge via office visit or telephone contacts. The primary outcome was major adverse cardiovascular events (MACE), including all-cause death, and unplanned rehospitalization for heart failure.RESULTS:A total of 342 patients presented with oHCM diseases enrolled in the present analyses. Mean age was 49.7, 57.6 % were men, mean 3-vessel AMR was 6.9. At a median follow-up of 18 months, high capability of 3-vessel AMR in predicting MACE was identified (AUC: 0.70) with the best cut-off value of 7.04. The primary endpoint of MACE was significantly higher in high microvascular resistance group (3-vessel AMR ≥ 7.04) as compared with low microvascular resistance group (56.5 % vs. 16.5 %; HR: 5.13; 95 % CI: 2.46-10.7; p < 0.001), which was mainly driven by the significantly higher risk of heart failure events in high microvascular resistance group. Additionally, 3-vessel AMR (HR: 4.37; 95 % CI: 1.99-9.58; p < 0.001), and age (per 1 year increase, HR: 1.03; 95 % CI: 1.01-1.06; p = 0.02) were independently associated with MACE.CONCLUSION:The present retrospective study demonstrated that the novel angiography-based AMR was a useful tool for CMD evaluation among patients with oHCM. High microvascular resistance as identified by 3-vessel AMR (≥7.04) was associated with worse prognosis.

3.1
4区
第一作者

Microvascular research 2024

Integrating network pharmacology and experimental verification to explore the mechanisms of salidroside against myocardial fibrosis.

Myocardial fibrosis (MF) is the manifestation of a variety of cardiovascular diseases. Salidroside (SAL) has been proved to have a certain effect on anti-fibrosis in various organs. However, the mechanism of SAL in the treatment of MF remains unclear. Network pharmacology showed that there were 1228 SAL-related target genes and 2793 MF-related target genes. The intersection of these genes resulted in 271 drug-disease interactions, and 15 core active targets were filtered from protein-protein interaction mapping. The top 20 Gene ontology biological processes analysis showed that the involved processes were close to the pathogenesis of MF. Among the top 20 enriched KEGG pathways, Wnt/β-catenin and TGF-β1/Smad3 signaling pathways were identified. In vivo, MI rats exhibited thinning of the myocardial region and the formation of fibrous scars, the expression of smad3 and β-catenin were increased. After SAL treatment, there was a significant reduction in collagen area and a decrease in the ratio of collagen type I to type III. The expression of smad3 and β-catenin was suppressed and positively correlated with the dosage of SAL. SAL may contribute to the progression of MF through the TGF-β1/Smad3 and Wnt/β-catenin signaling pathways.

3.1
3区
第一作者

Biochemical and biophysical research communications 2023

Xinfuli granule alleviates metabolic remodeling through inhibition of endoplasmic reticulum stress and mitochondrial injury in heart failure.

ETHNOPHARMACOLOGICAL RELEVANCE:"Qi deficiency-blood stasis-water retention syndrome" was the most frequent syndrome among heart failure(HF) patients according to Traditional Chinese Medicine (TCM) theory. Xinfuli Granule (XG) was constructed on the basis of classical formula "Baoyuan decoction" to enhance the function of nourishing Qi, activating blood and removing water retention. XG treatment has obtained clinical effect on HF patients.AIM OF THE STUDY:The regulation of XG on energy metabolism of HF was investigated with special focus on endoplasmic reticulum stress (ERS) and mitochondrial function.MATERIALS AND METHODS:Components of XG was acquired by UPLC/Q-TOF-MS Analysis, left anterior descending ligation(LAD)-induced HF rats model and hypoxia-ischemia(H-I)-induced H9c2 cells model were constructed to evaluate the effect of XG treatment. Cardiac function was evaluated by echocardiographic parameters, energy metabolism was evaluated by metabolites and ATP/ADP/AMP levels in blood samples, cardiomyocyte morphology and myocardial fibrosis were assessed by HE staining and Masson staining, mitochondrial ultrastructure was observed under Transmission Electron Microscope, viability and apoptosis rate of H9c2 cells was detected by cell counting kit-8 reaction and flow cytometry analysis, respectively. Mitochondrial membrane potential (MMP) of H9c2 cells was observed by JC-1 kit under fluorescent microscope, expression of peroxisome-proliferator-activated receptor (PPAR)-coactivator (PGC1α), ERS-related genes and RHOA/ROCK pathway were analysed by Quantitative Real-time PCR (RT-qPCR) and Western Blot.RESULTS:Here, we showed that XG alleviated cardiac metabolic remodeling and stimulated ATP production through elevated expression of PGC1α in HF rats. XG also helped recover mitochondrial deformation and decrease apoptosis rate accompanied by an increase of the Bcl2/Bax ratio and the mitochondrial membrane potential in hypoxia-ischemia (H-I) H9c2 cells. In addition, we found that XG downregulated ERS-related proteins ATF4, CHOP, Phospho-eIF2α, and Phospho-PERK, and suppressed the RHOA/ROCK pathway, which served as a potential mediator of ERS.CONCLUSIONS:we found that XG improved energy production by alleviating mitochondrial injury and inhibiting ERS in heart failures mediated by the RHOA/ROCK pathway.

5.4
2区

Journal of ethnopharmacology 2023

Xinfuli Granule improves post-myocardial infarction ventricular remodeling and myocardial fibrosis in rats by regulating TGF-β/Smads signaling pathway.

BACKGROUND:Recent clinical and experimental studies have confirmed the effects of Xinfuli Granule (XG), a compound Chinese medicine in the prevention and treatment of heart failure (HF). This study aimed to investigate the effects and the mechanisms of XG on ventricular reconstruction in rats with acute myocardial infarction (AMI).METHODS:Sprague-Dawley rats were subjected to left anterior descending branch ligation. The rats that survived 24 h were randomly assigned to five groups: medium-dose of XG group (MI+XGM), high-dose of XG group (MI+XGH), carvedilol group (MI+C), medium-dose of XG + carvedilol group (MI+C+XGM). Fourteen rats underwent identical surgical procedures without artery ligation, serving as sham controls. At 28 days, left ventricular weight to body weight (LVW/BW) and heart weight to body weight (HW/BW) were calculated; left ventricular ejection fraction (LVEF), left ventricular shortening fraction (LVFS), left ventricular internal diameter at systole (LVIDS) were measured by ultrasound; HE staining, Masson staining, and Sirius red staining were used to assess the myocardial pathological and physiological changes as well as myocardial fibrosis area and non-infarct zone I/III collagen ratio. Expression of Smad3 were detected and analyzed by Western blot, immunohistochemistry and immunofluorescence. P-Smad3, Smad2 and Smad7 in the TGF-β/Smads signaling pathway were also analyzed by Western blot.RESULTS:The LVIDS (P < 0.01), HW/BW (P < 0.05), type I/III collagen ratio (P < 0.01) and myocardial collagen (P < 0.01) decreased significantly while the LVW/BW, LVFS (P < 0.05) increased significantly in MI+XGM group as compared with those in other groups. The expression of key signal molecules of the TGF-β/Smads signaling pathway, including Smad3, P-Smad3 and Smad2 protein were decreased, while the expression of Smad7 increased in both XG and carvedilol treatment groups as compared to those of the MI group (all P < 0.01). Immunohistochemistry and immunofluorescence further confirmed the down-regulated Smad3 expression.CONCLUSION:XG can improve ventricular reconstruction and inhibit myocardial fibrosis in rats with AMI by regulating TGF-β/Smads signaling pathway.

2.5
4区
第一作者

Journal of geriatric cardiology : JGC 2017

Xinfuli improves cardiac function, histopathological changes and attenuate cardiomyocyte apoptosis in rats with doxorubicin-induced cardiotoxicity.

BACKGROUND:Xinfuli Granule (XG), a compound Chinese herbal medicine, has been effectively used in China for the treatment of heart failure for more than fifty years. This study aimed to investigate the effects and the underlying mechanisms of Xinfuli in rats with doxorubicin-induced cardiotoxicity.METHODS:Sprague-Dawley rats were treated with intraperitoneal injection of Doxorubicin (DOX, 2.5 mg/kg per week) for six weeks, and then randomly divided into four groups which received intragastrically administration of normal saline (control group) or different dosage of XG (0.675 g/kg per day, 1.35 g/kg per day, and 2.7g/kg per day, respectively) for six weeks. Transthoracic echocardiography was performed to evaluate the left ventricular fractional shortening (LVFS) and left ventricular ejection fraction (LVEF) before and after the XG treatment and histopathologic changes were also examined. Myocardial cell apoptosis was detected by TUNEL staining. The expression of related genes and proteins were analyzed using immunohistochemical staining.RESULTS:Compared to those in the control group, rats in XG treated groups showed significantly improved cardiac function and milder cardiac histopathological changes, lower cardiomyocyte apoptosis index, higher expression of Bcl-2 and lower expression of Bax.CONCLUSIONS:Administration of XG improves cardiac function and histopathological changes in rats with doxorubicin-induced cardiotoxicity. These effects are associated with inhibition of cardiomyocyte apoptosis, perhaps via regulation of Bcl-2 and Bax protein expression.

2.5
4区

Journal of geriatric cardiology : JGC 2016