邓鸣
中国医学科学院阜外医院深圳医院 心血管内科
BACKGROUND:Percutaneous transluminal coronary angioplasty (PTCA) represents an efficient therapeutic method for atherosclerosis but conveys a risk of causing restenosis. Endothelial colony-forming cell-derived exosomes (ECFC-exosomes) are important mediators during vascular repair. This study aimed to investigate the therapeutic effects of ECFC-exosomes in a rat model of atherosclerosis and to explore the molecular mechanisms underlying the ECFC-exosome-mediated effects on ox-LDL-induced endothelial injury.METHODS:The effect of ECFC-exosome-mediated autophagy on ox-LDL-induced human microvascular endothelial cell (HMEC) injury was examined by cell counting kit-8 assay, scratch wound assay, tube formation assay, western blot and the Ad-mCherry-GFP-LC3B system. RNA-sequencing assays, bioinformatic analysis and dual-luciferase reporter assays were performed to confirm the interaction between the miR-21-5p abundance of ECFC-exosomes and SIPA1L2 in HMECs. The role and underlying mechanism of ECFC-exosomes in endothelial repair were explored using a high-fat diet combined with balloon injury to establish an atherosclerotic rat model of vascular injury. Evans blue staining, haematoxylin and eosin staining and western blotting were used to evaluate vascular injury.RESULTS:ECFC-exosomes were incorporated into HMECs and promoted HMEC proliferation, migration and tube formation by repairing autophagic flux and enhancing autophagic activity. Subsequently, we demonstrated that miR-21-5p, which is abundant in ECFC-exosomes, binds to the 3' untranslated region of SIPA1L2 to inhibit its expression, and knockout of miR-21-5p in ECFC-exosomes reversed ECFC-exosome-decreased SIPA1L2 expression in ox-LDL-induced HMEC injury. Knockdown of SIPA1L2 repaired autophagic flux and enhanced autophagic activity to promote cell proliferation in ox-LDL-treated HMECs. ECFC-exosome treatment attenuated vascular endothelial injury, regulated lipid balance and activated autophagy in an atherogenic rat model of vascular injury, whereas these effects were eliminated with ECFC-exosomes with knockdown of miR-21-5p.CONCLUSIONS:Our study demonstrated that ECFC-exosomes protect against atherosclerosis- or PTCA-induced vascular injury by rescuing autophagic flux and inhibiting SIAP1L2 expression through delivery of miR-21-5p. Video Abstract.
Cell communication and signaling : CCS 2022
This study examined the effects of Stmn2 on phenotype transformation of vascular smooth muscle in vascular injury via RNA sequencing and experimental validation. Total RNA was extracted for RNA sequencing after 1, 3 and 5 days of injury to screen the differentially expressed genes (DEGs). Western blot was used to detect the protein expression of Stmn2 and its associated targets. The morphological changes of carotid arteries in rats were examined by hematoxylin and eosin (H&E) staining. The expression of vascular smooth muscle cell (VSMC) phenotype markers smooth muscle alpha-actin (α-SMA), vimentin and OPN were detected by immunohistochemistry. DEGs were related to the extracellular matrix and other cell components outside the plasma membrane. They were associated with protein binding, cytoskeleton protein binding, signal receptor binding and other molecular functions, actin cytoskeleton regulation and other Kyoto Encyclopedia of Genes and Genomes pathways. Stmn2 was identified as the hub gene of actin cytoskeleton pathway and vascular disease, and its expression followed the trend of decreasing initially and increasing afterwards during the progress of vascular injury. Western blot assay showed that the expression of Stmn2 and Tubulin decreased immediately after vascular injury; Stmn2 overexpression significantly up-regulated the expression of osteopontin and α-SMA and vimentin in VSMCs. The results of morphology analysis and immunostaining also showed that Stmn2 overexpression promoted the intima thickening and enhanced the proliferating cell nuclear antigen expression in the injured vascular tissues. In conclusion, our results implied that Stmn2 may play a potential role in vascular injury, which may be associated with VSMC phenotype transformation. Further studies are warranted to determine detailed molecular mechanisms of Stmn2 in vascular injury.
Environmental science and pollution research international 2022
Dysfunction of late endothelial progenitor cells (EPCs) has been suggested to be associated with hypertension. β2-Adrenergic receptor (β2AR) is a novel and key target for EPC homing. Here, we proposed that attenuated β2AR signaling contributes to EPCs dysfunction, whereas enhanced β2AR signaling restores EPCs' functions in hypertension. EPCs derived from hypertensive patients exhibited reduced cell number, impaired in vitro migratory and adhesion abilities, and impaired re-endothelialization after transplantation in nude mice with carotid artery injury. β2AR expression of EPCs from hypertensive patients was markedly downregulated, whereas the phosphorylation of the p38 mitogen-activated protein kinase (p38-MAPK) was elevated. The cleaved caspase-3 levels were elevated in EPCs. The overexpression of β2AR in EPCs from hypertensive patients inhibited p38-MAPK signaling, whereas it enhanced in vitro EPC proliferation, migration, and adhesion and in vivo re-endothelialization. The β2AR-mediated effects were attenuated by treating the EPCs with a neutralizing monoclonal antibody against β2AR, which could be partially antagonized by the p38-MAPK inhibitor SB203580. Moreover, shear stress stimulation, a classic nonpharmacological intervention, increased the phosphorylation levels of β2AR and enhanced the in vitro and in vivo functions of EPCs from hypertensive patients. Collectively, the current investigation demonstrated that impaired β2AR/p38-MAPK/caspase-3 signaling at least partially reduced the re-endothelialization capacity of EPCs from hypertensive patients. Restoration of β2AR expression and shear stress treatment could improve their endothelial repair capacity by regulating the p38-MAPK/caspase-3 signaling pathway. The clinical significance of β2AR in endothelium repair still requires further investigation.NEW & NOTEWORTHY Impaired β2-adrenergic receptor (β2AR) expression with an elevation of p38-MAPK/caspase-3 signaling at least partially contributes to the decline of re-endothelialization capacity of late endothelial progenitor cells (EPCs) from hypertensive patients. β2AR gene transfer and shear stress treatment improve the late EPC-mediated enhancement of the re-endothelialization capacity in hypertensive patients through activating β2AR/p38-MAPK/caspase-3 signaling. The present study is the first to reveal the potential molecular mechanism of the impaired endothelium-reparative capacity of late EPCs in hypertension after vascular injury and strongly suggests that β2AR is a novel and crucial therapeutic target for increasing EPC-mediated re-endothelialization capacity in hypertension.
American journal of physiology. Heart and circulatory physiology 2021
AIM:Diabetic nephropathy (DN) is a serious health problem worldwide. Epidermal growth factor (EGF) has suggested as a potential biomarker for the progression of chronic kidney disease. In this study, we examined the effects of EGF on the high glucose (HG)-induced podocyte injury and explored the underlying molecular mechanisms.METHODS:The cell proliferation, toxicity, and cell apoptosis of podocytes were determined by CCK-8 assay, lactate dehydrogenase release assay, and flow cytometry, respectively, and protein levels in the podocytes were determined by Western blot assay. Mechanistically, DNA methylation analysis, bioinformatic analysis, methylation‑specific PCR and quantitative real-time PCR were used to analyze functional pathways in differentially methylated genes and the expression of the key methylated genes in the podocytes after different interventions.RESULTS:EGF treatment significantly increased the protein expression level of LC3 and decreased the protein level of P62 in HG-stimulated podocytes, which was attenuated by autophagy inhibitor, 3-methyladenine. EGF increased the cell proliferation and the protein expression levels of nephrin and synaptopodin, but reduced cell toxicity and cell apoptosis and protein expression level of cleaved caspase-3, which was partially antagonized by 3-methyladenine. DNA methylation expression profiles revealed the differential hypermethylation sites and hypomethylation sites among podocytes treated with normal glucose, HG and HG+EGF. GO enrichment analysis showed that DNA methylation was significantly enriched in negative regulation of phosphorylation, cell-cell junction and GTPase binding. KEGG pathway analysis showed that these genes were mainly enriched in PI3K-Akt, Hippo and autophagy pathways. Further validation studies revealed that six hub genes (ITGB1, GRB2, FN1, ITGB3, FZD10 and FGFR1) may be associated with the protective effects of EGF on the HG-induced podocyte injury.CONCLUSION:In summary, our results demonstrated that EGF exerted protective effects on HG-induced podocytes injury via enhancing cell proliferation and inhibiting cell apoptosis. Further mechanistic studies implied that EGF-mediated protective effects in HG-stimulated podocytes may be associated with modulation of autophagy and PI3K/AKT/mTOR signaling pathway.
Diabetes, metabolic syndrome and obesity : targets and therapy 2021
BACKGROUND:Ischemia/reperfusion-mediated myocardial infarction (MIRI) is a major pathological factor implicated in the progression of ischemic heart disease, but the key factors dysregulated during MIRI have not been fully elucidated, especially those essential non-coding factors required for cardiovascular development.METHODS:A murine MIRI model and RNA sequencing (RNA-seq) were used to identify key lncRNAs after myocardial infarction. qRT-PCR was used to validate expression in cardiac muscle tissues and myocardial cells. The role of Gm18840 in HL-1 cell growth was determined by flow cytometry experiments in vitro. Full-length Gm18840 was identified by using a rapid amplification of cDNA ends (RACE) assay. The subcellular distribution of Gm18840 was examined by nuclear/cytoplasmic RNA fractionation and qRT-PCR. RNA pulldown and RNA immunoprecipitation (RIP)-qPCR assays were performed to identify Gm18840-interacting proteins. Chromatin isolation by RNA purification (ChIRP)-seq (chromatin isolation by RNA purification) was used to identify the genome-wide binding of Gm18840 to chromatin. The regulatory activity of Gm18840 in transcriptional regulation was examined by a luciferase reporter assay and qRT-PCR.RESULTS:Gm18840 was upregulated after myocardial infarction in both in vivo and in vitro MIRI models. Gm18840 was 1,471 nt in length and localized in both the cytoplasm and the nucleus of HL-1 cells. Functional studies showed that the knockdown of Gm18840 promoted the apoptosis of HL-1 cells. Gm18840 directly interacts with histones, including H2B, highlighting a potential function in transcriptional regulation. Further ChIRP-seq and RNA-seq analyses showed that Gm18840 is directly bound to the cis-regulatory regions of genes involved in developmental processes, such as Junb, Rras2, and Bcl3.CONCLUSION:Gm18840, a novel transcriptional regulator, promoted the apoptosis of myocardial cells via direct transcriptional regulation of essential genes and might serve as a novel therapeutic target for MIRI.
Frontiers in cell and developmental biology 2021
OBJECTIVE:This study aimed to determine the effects of emodin on the viability, proliferation and apoptosis of human pulmonary artery smooth muscle cells (PASMCs) under hypoxia and to explore the underling molecular mechanisms.METHODS:PASMCs were cultured in a hypoxic environment (1% oxygen) and then treated with emodin. Cell viability, proliferation and apoptosis were evaluated using CCK-8 assay, EdU staining assay, western blot and Mito-tracker red CMXRos and Annexin V-FITC apoptosis detection assay. The microRNA (miRNA)/mRNA and protein expression levels were assessed by quantitative real-time PCR and western blotting, respectively. Based on transcriptomics and proteomics were used to identify potential signaling pathways. Luciferase reporter assay was utilized to examine the interaction between miR-244-5p and DEGS1.RESULTS:Emodin at 40 and 160 µM concentration-dependently suppressed cell viability, proliferation and migration, but enhanced cell apoptosis of PASMCs under hypoxia. Transcriptomic and proteomic analysis revealed that emodin could attenuate the activity of PI3K/Akt signaling in PASMCs under hypoxia. In addition, delta 4-desaturase, sphingolipid 1 (DEGS1) was found to be a direct target of miR-244-5p. Emodin could significantly up-regulated miR-244-5p expression and down-regulated DEGS1 expression in PASMCs under hypoxia. Furthermore, emodin-mediated effects on cell viability, migration, apoptosis and PI3K/Akt signaling activity of PASMCs under hypoxia were significantly attenuated by miR-244-5p knockdown.CONCLUSIONS:Our results indicated that emodin suppressed cell viability, proliferation and migration, promoted cell apoptosis of PASMCs under hypoxia via modulating miR-244-5p-mediated DEGS1/PI3K/Akt signaling pathway. MiR-244-5p/DEGS1 axis was initially investigated in this current study, which is expected to further the understanding of the etiology of pulmonary arterial hypertension.
BMC pulmonary medicine 2021
The present study was undertaken to examine the association between intermittent hypoxia and left ventricular (LV) remodeling and explore which parameter of intermittent hypoxia is most relevant to LV remodeling in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS). Two hundred eighty six patients underwent polysomnographic examination were enrolled. Based on apnea-hypoxia index (AHI), patients were divided into no, mild, moderate and severe OSAHS groups. Between-group differences in LV remodeling and the association between parameters of intermittent hypoxia and LV remodeling was evaluated. Patients with severe OSAHS were more likely to have hypertension, and higher values of LV mass (LVM) and LVM index (LVMI). In univariate regression analysis, male, body mass index (BMI), systolic and diastolic blood pressure (BP), statins, antihypertensive drugs, creatinine, and parameters of intermittent hypoxia (AHI, obstructive apnea index [OAI], lowest oxygen saturation [LSpO2], oxygen desaturation index [ODI], time spent below oxygen saturation of 90% [TS90%], and mean nocturnal oxygen saturation [MSpO2]) were associated with LVMI. After multivariate regression analyses, only male gender, BMI, systolic BP, creatinine, and ODI remained significantly associated with LVMI. Compared to those without LV hypertrophy (LVH), patients with LVH had higher ODI. Compared to patients with normal LV, concentric remodeling and eccentric LVH, those with concentric LVH had higher ODI. In conclusion, intermittent hypoxia was significantly associated with left ventricular remodeling; and among various parameters of intermittent hypoxia, ODI was the most relevant to LV remodeling.
Frontiers in physiology 2020
Myocardial infarction represents one of the severe cardiovascular diseases and is one of the high-risk factors for mortality, and ischemia/reperfusion (I/R) injury is one of the risk factors that contribute to the high mortality of myocardial infarction. MicroRNAs have been proven as key regulators in various diseases including myocardial infarction. The present study was sought to determine the role of miR-703 in the myocardial I/R injury and to explore detailed mechanisms. Hypoxia/reoxygenation (H/R) treatment repressed cell viability, increased cytotoxicity and pyroptosis in mouse cardiomyocytes. More importantly, we found that miR-703 was suppressed in mouse cardiomyocytes upon H/R stimulation. Restoration of miR-703 expression in mouse cardiomyocytes counteracted the H/R-induced cytotoxicity and pyroptosis in mouse cardiomyocytes; and the effects of miR-703 inhibition on cell viability and pyroptosis were similar to that of H/R treatment in mouse cardiomyocytes. In a further investigation, we found that NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) was targeted and repressed by miR-703 in mouse cardiomyocytes. NLRP3 knockdown also attenuated H/R-induced cytotoxicity and pyroptosis in mouse cardiomyocytes. In the mechanistic perspective, NLRP3 enforced expression disrupted the protective effects of miR-703 restoration on the H/R-induced cytotoxicity and pyroptosis in mouse cardiomyocytes. Our results for the first time demonstrate the protective actions of miR-703 in the H/R-induced mouse cardiomyocyte injury. More importantly, miR-703 protects against H/R-induced cardiomyocyte injury via inhibiting the NLRP3/caspase-1-mediated pyroptosis.
Journal of bioenergetics and biomembranes 2020