范泸韵
中国医学科学院阜外心血管病医院 阜外医院
BACKGROUND:The 2017 American College of Cardiology/American Heart Association (ACC/AHA) blood pressure (BP) guideline lowered the threshold defining hypertension to 130/80 mmHg. However, how stage 1 hypertension defined using this guideline is associated with cardiovascular events in Chinese adults remains unclear. This study assessed the association between stage 1 hypertension defined by the 2017 ACC/AHA guideline and clinical outcomes in the Chinese population.METHODS:Participants with stage 1 hypertension ( n = 69,509) or normal BP ( n = 34,142) were followed in this study from 2006/2007 to 2020. Stage 1 hypertension was defined as a systolic blood pressure of 130-139 mmHg or a diastolic blood pressure of 80-89 mmHg. None were taking antihypertensive medication or had a history of myocardial infarction (MI), stroke, or cancer at baseline. The primary outcome was a composite of MI, stroke, and all-cause mortality. The secondary outcomes were individual components of the primary outcome. Cox proportional hazards models were used for the analysis.RESULTS:During a median follow-up of 11.09 years, we observed 10,479 events (MI, n = 995; stroke, n = 3408; all-cause mortality, n = 7094). After multivariable adjustment, the hazard ratios for stage 1 hypertension vs. normal BP were 1.20 (95% confidence interval [CI], 1.13-1.25) for primary outcome, 1.24 (95% CI, 1.05-1.46) for MI, 1.45 (95% CI, 1.33-1.59) for stroke, and 1.11 (95% CI, 1.04-1.17) for all-cause mortality. The hazard ratios for participants with stage 1 hypertension who were prescribed antihypertensive medications compared with those without antihypertensive treatment during the follow-up was 0.90 (95% CI, 0.85-0.96).CONCLUSIONS:Using the new definition, Chinese adults with untreated stage 1 hypertension are at higher risk for MI, stroke, and all-cause mortality. This finding may help to validate the new BP classification system in China.
Chinese medical journal 2024
BACKGROUND:There is little published evidence about the role of non-alcoholic fatty liver disease (NAFLD) in the progression from prehypertension to hypertension. This study was conducted to investigate the association of NAFLD and its severity with the risk of hypertension developing from prehypertension.METHODS:The study cohort comprised 25,433 participants from the Kailuan study with prehypertension at baseline; those with excessive alcohol consumption and other liver diseases were excluded. NAFLD was diagnosed by ultrasonography and stratified as mild, moderate, or severe. Univariable and multivariable Cox proportional hazard regression was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) of incident hypertension according to the presence and 3 categories of severity of NAFLD.RESULTS:During a median of 12.6 years of follow-up, 10,638 participants progressed to hypertension from prehypertension. After adjusting for multiple risk factors, patients with prehypertension and NAFLD had a 15% higher risk of incident hypertension than those without NAFLD (HR = 1.15, 95% CI 1.10-1.21). Moreover, the severity of NAFLD was associated with the incidence of hypertension, which was higher in patients with more severe NAFLD (HR = 1.15 [95% CI 1.10-1.21] in the mild NAFLD group; HR = 1.15 [95% CI 1.07-1.24] in the moderate NAFLD group; and HR = 1.20 [95% CI 1.03-1.41] in the severe NAFLD group). Subgroup analysis indicated that age and baseline systolic blood pressure may modify this association.CONCLUSIONS:NAFLD is an independent risk factor for hypertension in patients with prehypertension. The risk of incident hypertension increases with the severity of NAFLD.
Chinese medical journal 2023
Arthritis & rheumatology (Hoboken, N.J.) 2023
OBJECTIVE:Mounting evidence has linked microbiome and metabolome to systemic autoimmunity and cardiovascular diseases (CVDs). Takayasu arteritis (TAK) is a rare disease that shares features of immune-related inflammatory diseases and CVDs, about which there is relatively limited information. This study was undertaken to characterize gut microbial dysbiosis and its crosstalk with phenotypes in TAK.METHODS:To address the discriminatory signatures, we performed shotgun sequencing of fecal metagenome across a discovery cohort (n = 97) and an independent validation cohort (n = 75) including TAK patients, healthy controls, and controls with Behçet's disease (BD). Interrogation of untargeted metabolomics and lipidomics profiling of plasma and fecal samples were also used to refine features mediating associations between microorganisms and TAK phenotypes.RESULTS:A combined model of bacterial species, including unclassified Escherichia, Veillonella parvula, Streptococcus parasanguinis, Dorea formicigenerans, Bifidobacterium adolescentis, Lachnospiraceae bacterium 7 1 58FAA, Escherichia coli, Streptococcus salivarius, Klebsiella pneumoniae, Bifidobacterium longum, and Lachnospiraceae Bacterium 5 1 63FAA, distinguished TAK patients from controls with areas under the curve (AUCs) of 87.8%, 85.9%, 81.1%, and 71.1% in training, test, and validation sets including healthy or BD controls, respectively. Diagnostic species were directly or indirectly (via metabolites or lipids) correlated with TAK phenotypes of vascular involvement, inflammation, discharge medication, and prognosis. External validation against publicly metagenomic studies (n = 184) on hypertension, atrial fibrillation, and healthy controls, confirmed the diagnostic accuracy of the model for TAK.CONCLUSION:This study first identifies the discriminatory gut microbes in TAK. Dysbiotic microbes are also linked to TAK phenotypes directly or indirectly via metabolic and lipid modules. Further explorations of the microbiome-metagenome interface in TAK subtype prediction and pathogenesis are suggested.
Arthritis & rheumatology (Hoboken, N.J.) 2023
G protein-coupled receptors (GPCRs) are the largest family of druggable targets, and their biological functions depend on different ligands and intracellular interactomes. Some microRNAs (miRNAs) bind as ligands to RNA-sensitive toll-like receptor 7 to regulate the inflammatory response, thereby contributing to the pathogenesis of cancer or neurodegeneration. It is unknown whether miRNAs bind to angiotensin II (Ang II) type 2 receptor (AGTR2), a critical protective GPCR in cardiovascular diseases, as ligands or intracellular interactomes. Here, screening for miRNAs that bind to AGTR2, we identified and confirmed that the pre-miRNA hsa-let-7a-2 non-competitively binds to the intracellular third loop of AGTR2. Functionally, intracellular hsa-let-7a-2 overexpression suppressed the Ang II-induced AGTR2 effects such as cAMP lowering, RhoA inhibition, and activation of Src homology 2 domain-containing protein-tyrosine phosphatase 1, whereas hsa-let-7a-2 knockdown enhanced these effects. Consistently, overexpressed hsa-let-7a-2 restrained the AGTR2-induced antiproliferation, antimigration, and proapoptosis of cells, and vasodilation of mesenteric arteries. Our findings demonstrated that hsa-let-7a-2 is a novel intracellular partner of AGTR2 that negatively regulates AGTR2-activated signals.
International journal of biological sciences 2022
Gut microbiota dysbiosis promotes metabolic syndromes (e.g., hypertension); however, the patterns that drive hypertensive pathology and could be targeted for therapeutic intervention are unclear. We hypothesized that gut microbes might translocate to the kidney to trigger hypertension. We aimed to uncover their method of colonization, and thereby how to maintain blood pressure homeostasis. Using combined approaches based on fluorescence in situ hybridization (FISH) and immunofluorescence staining, electron microscopy analysis, bacterial cultures, species identification, and RNA-sequencing-based meta-transcriptomics, we first demonstrated the presence of bacteria within the kidney of spontaneously hypertensive rats (SHRs) and its normotensive counterpart, Wistar-Kyoto rats (WKYs), and patients with hypertension. Translocated renal bacteria were coated with secretory IgA (sIgA) or remained dormant in the L-form. Klebsiella pneumoniae (K.pn) was identified in the kidneys of germ-free (GF) mice following intestinal transplantation, which suggested an influx of gut bacteria into the kidneys. Renal bacterial taxa and their function are associated with hypertension. Hypertensive hosts showed increased richness in the pathobionts of their kidneys, which were partly derived from the gastrointestinal tract. We also demonstrated the indispensable role of bacterial IgA proteases in the translocation of live microbes. Furthermore, Tartary buckwheat dietary intervention reduced blood pressure and modulated the core renal flora-host ecosystem to near-normal states. Taken together, the unique patterns of viable and dormant bacteria in the kidney provide insight into the pathogenesis of non-communicable chronic diseases and cardiometabolic diseases (e.g., hypertension), and may lead to potential novel microbiota-targeted dietary therapies.
Gut microbes 2022
BACKGROUND:Hypertension is currently the leading modifiable cause of global morbidity and mortality, leading to substantial health and financial burdens. Although multiple studies of management models and innovative therapeutic strategies for hypertension have been conducted, there are still gaps in the field, with a poor control rate reflecting a lack of novel, effective, clinically translated medication or intervention options. Recent animal and human studies repeatedly confirmed a link between the microbiota and hypertension. Of note is our previous study establishing a cause-and-effect relationship between the gut microbiota and blood pressure elevation. A hypothesis of gut microbiota intervention for treating hypertension is thus postulated, and fecal microbiota transplantation (FMT) from healthy donors was performed.METHODS:A multicenter, randomized, placebo-controlled, blinded clinical trial will be performed in 120 grade 1 hypertensive patients for 3 months. All recruited patients will be randomly assigned in a 1:1 ratio to take oral FMT capsules or placebo capsules on day 1, day 7, and day 14 and will be followed up on day 30, day 60, and day 90. The primary outcome is the change in office systolic blood pressure from baseline to day 30. The main secondary outcomes are BP indicators, including changes in systolic and diastolic blood pressure from office and 24-h ambulatory blood pressure monitoring; assessments of ankle-branchial index and pulse wave velocity; profiling of fecal microbial composition and function; profiling of fecal and serum metabolome; changes in levels of blood glucose, blood lipids, and body mass index; and assessment of adverse events as a measure of safety.DISCUSSION:Expanding upon our previous research on the role of the gut microbiota in the pathogenesis of hypertension, this study serves as a clinical translation advancement and explores the potential of fecal microbiota transplantation for treating hypertension. The underlying mechanisms, particularly the roles of specific microorganisms or their postbiotics in blood pressure amelioration, will also be investigated via multiple approaches, such as metagenomic sequencing and metabolomic profiling.TRIAL REGISTRATION:ClinicalTrials.gov NCT04406129 . Registered on May 28, 2020.
Trials 2022
Disorders of lipoprotein metabolism have been linked with an increased risk of cardiovascular diseases (CVDs) but the causal association is unclear. In this study, we investigated the causal association between disorders of lipoprotein metabolism and CVDs using two-sample Mendelian randomization (MR). The exposure was obtained from Finn genome-wide association studies (14,010 cases, 197,259 controls), and the corresponding CVDs were extracted from the largest published genome-wide association studies. A random-effects inverse-variance weighted method was used for the main analyses with a complementary analysis using the weighted median and MR-Egger approaches. Multiple sensitivity analyses were performed to assess horizontal pleiotropy. The MR analysis indicated positive associations of disorders of lipoprotein metabolism with coronary artery disease (odds ratio [OR] 1.670, 95% confidence interval [CI] 1.373-2.031; p < 0.001), aortic aneurysm (OR 1.394, 95% CI 1.199-1.619; p < 0.001), heart failure (OR 1.20, 95% CI 1.115-1.294; p < 0.001), hypertension (OR 1.011, 95% CI 1.006-1.091; p < 0.001), old myocardial infarction (OR 1.004, 95% CI 1.002-1.007; p = 0.001), and stroke (OR 1.002, 95% CI 1.001-1.003; p = 0.002). There is a suggestive causal relationship between disorders of lipoprotein metabolism and atrial fibrillation (OR 1.047, 95% CI 1.006-1.091; p = 0.026) and acute myocardial infarction (OR 1.003, 95% CI 1.001-1.005; p = 0.012). There was limited evidence of a causal association between disorders of lipoprotein metabolism and peripheral vascular disease and venous thromboembolism. Our findings indicate a significant causal association between disorders of lipoprotein metabolism and many CVDs, including coronary artery disease, aortic aneurysm, heart failure, hypertension, old myocardial infarction, and stroke. These associations may be useful for development of treatment strategies that regulate lipoprotein metabolism in patients with CVD.
Frontiers in cell and developmental biology 2022
Hepatocellular carcinoma (HCC) is a common malignancy. However, the molecular mechanisms of the progression and prognosis of HCC remain unclear. In the current study, we merged three Gene Expression Omnibus (GEO) datasets and combined them with The Cancer Genome Atlas (TCGA) dataset to screen differentially expressed genes. Furthermore, protein‒protein interaction (PPI) and weighted gene coexpression network analysis (WGCNA) were used to identify key gene modules in the progression of HCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that the terms were associated with the cell cycle and DNA replication. Then, four hub genes were identified (AURKA, CCNB1, DLGAP5, and NCAPG) and validated via the expression of proteins and transcripts using online databases. In addition, we established a prognostic model using univariate Cox proportional hazards regression and least absolute shrinkage and selection operator (LASSO) regression. Eight genes were identified as prognostic genes, and four genes (FLVCR1, HMMR, NEB, and UBE2S) were detrimental gens. The areas under the curves (AUCs) at 1, 3 and 5 years were 0.622, 0.69, and 0.684 in the test dataset, respectively. The effective of prognostic model was also validated using International Cancer Genome Consortium (ICGC) dataset. Moreover, we performed multivariate independent prognostic analysis using multivariate Cox proportional hazards regression. The results showed that the risk score was an independent risk factor. Finally, we found that all prognostic genes had a strong positive correlation with immune infiltration. In conclusion, this study identified the key hub genes in the development and progression of HCC and prognostic genes in the prognosis of HCC, which was significant for the future diagnosis and prognosis of HCC.
Frontiers in molecular biosciences 2022
Background:Accumulating evidence has indicated that persistent human cytomegalovirus (HCMV) infection is associated with several cardiovascular diseases including atherosclerosis and coronary artery disease. However, whether there is a causal association between the level of anti-HCMV immune response and the risk of cardiovascular diseases remains unknown.Methods:Single-nucleotide polymorphisms associated with anti-cytomegalovirus immunoglobulin (Ig) G levels were used as instrumental variables to estimate the causal effect of anti-cytomegalovirus IgG levels on 9 cardiovascular diseases (including atrial fibrillation, coronary artery disease, hypertension, heart failure, peripheral artery disease, pulmonary embolism, deep vein thrombosis of the lower extremities, rheumatic valve diseases, and non-rheumatic valve diseases). For each cardiovascular disease, Mendelian randomization (MR) analyses were performed. Inverse variance-weighted meta-analysis (IVW) with a random-effects model was used as a principal analysis. In addition to this, the weighted median approach and MR-Egger method were used for further sensitivity analysis.Results:In the IVW analysis, genetically predicted anti-cytomegalovirus IgG levels were suggestively associated with coronary artery disease with an odds ratio (OR) of 1.076 [95% CI, 1.009-1.147; p = 0.025], peripheral artery disease (OR 1.709; 95% CI, 1.039-2.812; p = 0.035), and deep vein thrombosis (OR 1.002; 95% CI, 1.000-1.004; p = 0.025). In the further analysis, similar causal associations were obtained from weighted median analysis and MR-Egger analysis with lower precision. No notable heterogeneities and horizontal pleiotropies were observed (p > 0.05).Conclusions/Interpretation:Our findings first provide direct evidence that genetic predisposition of anti-cytomegalovirus IgG levels increases the risk of coronary artery disease, peripheral artery disease, and deep vein thrombosis.
Frontiers in cellular and infection microbiology 2022