何柞祥

中国医学科学院阜外医院 心血管内科

Sex-specific reference limits of left ventricular ejection fraction and volumes estimated by gated myocardial perfusion imaging for low-risk patients in China: a comparison between three quantitative algorithms.

BACKGROUND:Establishing appropriate reference value limits of left ventricular (LV) functional parameters is fundamental for the assessment of cardiac function. At present, there are no reports aimed at establishing reference limits using gated myocardial perfusion imaging (MPI) in mainland China.METHODS:A total of 175 consecutive patients who were defined as low-risk coronary artery disease patients underwent stress Technetium-99m sestamibi (99mTc-MIBI)-gated myocardial perfusion single-photon emission computed tomography (SPECT) imaging. The LV ejection fraction (EF), end-diastolic volume (EDV), and end-systolic volume (ESV) were obtained by 3 quantitative algorithms: quantitative-gated SPECT, emory cardiac toolbox, and 4-dimensional model SPECT, respectively. The threshold values were obtained using Gaussian distribution or percentiles. The influence of gender, age, and weight on cardiac functional parameters was analyzed by multiple regressions for linear models.RESULTS:For males, the lower reference limits of EF were 52%, 63%, and 58%, respectively; and the upper limits of EDV/ESV were 106/45, 152/55, and 135/55 mL, respectively. For females, the lower reference limits of EF were 58%, 66%, and 65%, respectively; and the upper limits of EDV/ESV were 73/27, 105/31, and 88/29 mL, respectively. Compared to females, males had greater cardiac volume values and lower mean EF values. Bland-Altman plots revealed that the cardiac function parameters calculated by the three quantitative algorithms were in high agreement.CONCLUSIONS:In this study, the reference limits of cardiac parameters calculated by the 3 methods based on single-center data in China were preliminarily established. The threshold values determined by three quantitative algorithms were not interchangeable but were highly correlated.

2.8
2区

Quantitative imaging in medicine and surgery 2022

Evaluation of left ventricular volumes and ejection fraction by 99mTc-MIBI gated SPECT and 18F-FDG gated PET in patients with prior myocardial infarction.

BACKGROUND:This study aimed to compare the accuracy of gated-SPECT (GSPECT) and gated-PET (GPET) in the assessment of left ventricular (LV) end-diastolic volumes (EDVs), end-systolic volumes (ESVs) and LV ejection fractions (LVEFs) among patients with prior myocardial infarction (MI).METHODS:One hundred and sixty-eight consecutive patients with MI who underwent GSPECT and GPET were included. Of them, 76 patients underwent CMR in addition to the two imaging modalities. The measurements of LV volumes and LVEF were performed using Quantitative Gated SPECT (QGS), Emory Cardiac Toolbox (ECTB), and 4D-MSPECT (4DM).RESULTS:The correlation between GPET, GSPECT, and CMR were excellent for LV EDV (r = 0.855 to 0.914), ESV (r = 0.852 to 0.949), and LVEF (r = 0.618 to 0.820), as calculated from QGS, ECTB, and 4DM. In addition, subgroup analysis revealed that EDV, ESV, and LVEF measured by GPET were accurate in patients with different extents of total perfusion defect (TPD), viable myocardium, and perfusion/metabolic mismatch. Furthermore, multivariate regression analysis identified that mismatch score was associated with the difference in EDV (P < 0.05) measurements between GPET and CMR.CONCLUSIONS:In patients with MI, LV volumes and LVEF scores measured by both GSPECT and GPET imaging were comparable to those determined by CMR, but should not be interchangeable in individual patients.

2.4
4区

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2021

Preserved myocardial viability in patients with chronic total occlusion of a single coronary artery.

OBJECTIVE:To assess the benefits of coronary collateral circulation on myocardial perfusion, viability and function in patients with total occlusion of a single coronary artery using the 99mTc-sestamibi SPECT and 18F-fluorodeoxyglucose PET.METHODS:164 Consecutive patients were included who underwent coronary angiography results exhibited total occlusion of a single coronary artery and received 99mTc-MIBI SPECT and 18F-FDG PET within 90 days of angiography. Myocardial perfusion and viability in patients with collateral circulation and those without it were compared. Long-term follow-up was performed through a review of patient clinical records.RESULTS:Collateral circulation was present in 56 patients (34%) and absent in 108 patients (66%). The total perfusion defect size in patients with collateral circulation decreased when compared to those without (30% ± 13% to 35% ± 14%, P < .05). The myocardial viability was 22% ± 12% in patients with collateral circulation, and 12% ± 9% in those without (P < .001). The left ventricular ejection fraction was higher, and the end-diastolic and end-systolic left ventricular volumes were lower in patients with collateral circulation (39% ± 11%, 138 ± 66, 89 ± 57) compared to patients without collateral circulation (31% ± 9%, 177 ± 55, 125 ± 48, all P < .001, respectively). Multi-factor logistic regression identified that concerning the variables of sex, age, viable myocardium, collateral circulation, treatment type and others, only treatment type was significantly associated with therapeutic effects (OR 3.872, 95% CI 1.915-7.830, P < .001).CONCLUSION:Collateral circulation can preserve resting myocardial blood perfusion and myocardial viability, and help maintain the function of the left ventricular myocardium. The appropriate treatment strategy will have a substantial impact on the therapeutic outcome.

2.4
4区

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2021

Relationship of myocardial hibernation, scar, and angiographic collateral flow in ischemic cardiomyopathy with coronary chronic total occlusion.

BACKGROUND:The relationship between myocardial viability and angiographic collateral flow is not fully elucidated in ischemic cardiomyopathy (ICM) with coronary artery chronic total occlusion (CTO). We aimed to clarify the relationship between myocardial hibernation, myocardial scar, and angiographic collateral flow in these patients.METHODS AND RESULTS:Seventy-one consecutive ICM patients with 122 CTOs and 652 dysfunctional segments within CTO territories were retrospectively analyzed. Myocardial hibernation (perfusion-metabolism mismatch) and the extent of 18F-fluorodeoxyglucose (FDG) abnormalities were assessed using 99mTc-sestamibi and 18F-FDG imaging. Myocardial scar was evaluated by late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) imaging. Collateral flow observed on coronary angiography was assessed using Rentrop classification. In these patients, neither the extent nor frequency of myocardial hibernation or scar was related to the status of collateral flow. Moreover, the matching rate in determining myocardial viability was poor between any 2 imaging indices. The extent of 18F-FDG abnormalities was linearly related to the extent of LGE rather than myocardial hibernation. Of note, nearly one-third (30.4%) of segments with transmural scar still had hibernating tissue. Hibernation and non-transmural scar had higher sensitivity (63.0% and 66.7%) than collateral flow (37.0%) in predicting global functional improvement.CONCLUSIONS:Angiographic collateral cannot accurately predict myocardial viability, and has lower sensitivity in prediction of functional improvement in CTO territories in ICM patients. Hence, assessment of myocardial viability with non-invasive imaging modalities is of importance. Moreover, due to the lack of correlation between myocardial hibernation and scar, these two indices are complementary but not interchangeable.

2.4
4区

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology 2019

Chinese expert consensus on the non-invasive imaging examination pathways of stable coronary artery disease.

2.5
4区

Journal of geriatric cardiology : JGC 2018

Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells.

Transplantation of endothelial cells (ECs) holds great promise for treating various kinds of ischemic diseases. However, the major challenge in ECs-based therapy in clinical applications is to provide high quality and enough amounts of cells. In this study, we developed a simple and efficient system to direct endothelial differentiation of mouse embryonic stem cells (ESCs) using a controllable chitosan nitric oxide (NO)-releasing hydrogel (CS-NO). ESCs were plated onto the hydrogel culture system, and the expressions of differentiation markers were measured. We found that the expression of Flk-1 (early ECs marker) and VE-cadherin (mature ECs marker) increased obviously under the controlled NO releasing environment. Moreover, the Flk-1 upregulation was accompanied by the activation of the phospho-inositide-3 kinase (PI3K)/Akt signaling. We also found that in the presence of the PI3K inhibitor (LY294002), the endothelial commitment of ESCs was abolished, indicating the importance of Akt phosphorylation in the endothelial differentiation of ESCs. Interestingly, in the absence of NO, the activation of Akt phosphorylation alone by using AKT activator (SC-79) did not profoundly promote the endothelial differentiation of ESCs, suggesting an interdependent relationship between NO and the Akt phosphorylation in driving endothelial fate specification of ESCs. Taken together, we demonstrated that NO releasing in a continuous and controlled manner is a simple and efficient method for directing the endothelial differentiation of ESCs without adding growth factors.STATEMENT OF SIGNIFICANCE:Fascinating data continues to show that artificial stem cell niche not only serve as a physical supporting scaffold for stem cells proliferation, but also as a novel platform for directing stem cell differentiation. Because of the lack of proper microenvironment for generating therapeutic endothelial cells (ECs) in vitro, the source of ECs for transplantation is the major limitation in ECs-based therapy to clinical applications. The current study established a feeder cell-free, 2-dimensional culture system for promoting the differentiation processes of embryonic stem cells (ESCs) committed to the endothelial lineage via using a nitric oxide (NO) controlled releasing hydrogel (CS-NO). Notably, the NO releasing from the hydrogel could selectively up-regulate Flk-1 (early ECs marker) and VE-cadherin (mature ECs marker) in the absence of growth factors, which was of crucial importance in the endothelial differentiation of ESCs. In summary, the current study proposes a simple and efficient method for directing the endothelial differentiation of ESCs without extra growth factors.

9.7
1区

Acta biomaterialia 2017

Dual-time-point myocardial 18F-FDG imaging in the detection of coronary artery disease.

BACKGROUND:Myocardial 18F-deoxyglucose (18F-FDG) uptake has been observed to be enhanced in patients with coronary artery disease (CAD) under fasting conditions. However, whether the increased 18F-FDG is induced by myocardial ischemia and how to discriminate ischemic from physiological 18F-FDG uptake have rarely been investigated.METHODS:Under fasting conditions, 18F-FDG PET imaging was performed in 52 patients with suspected CAD. Two 18F-FDG imaging sessions were conducted within two hours after a single administration of 18F-FDG (dual-time-point imaging), and with an intervention of an exercise test after the first imaging. Abnormal 18F-FDG uptake was determined by the classification of the 18F-FDG distribution pattern, and the changes of the 18F-FDG distribution between the two PET imaging sessions were analyzed. 99mTc-sestamibi was injected at peak exercise and myocardial perfusion imaging (MPI) was conducted after 18F-FDG imaging. Coronary angiography was considered the reference for diagnosing CAD.RESULTS:Overall, 54.8% (17/31) of CAD patients and 36.2% (21/58) of stenotic coronaries showed exercise-induced abnormal uptake of 18F-FDG. Based on the classification of the 18F-FDG distribution pattern, the sensitivity and specificity of exercise 18F-FDG imaging to diagnose CAD was 80.6% and 95.2% by patient analysis, 56.9% and 98.0% by vascular analysis, respectively. Compared with MPI, 18F-FDG imaging had a tendency to have higher sensitivity (80.6% vs 64.5%, P = 0.06) on the patient level.CONCLUSION:Myocardial ischemia can induce 18F-FDG uptake. With the classification of the 18F-FDG distribution pattern, dual-time-point 18F-FDG imaging under fasting conditions is efficient in diagnosing CAD.

2.1
3区

BMC cardiovascular disorders 2017

CMR assessment of the left ventricle apical morphology in subjects with unexplainable giant T-wave inversion and without apical wall thickness ≥15 mm.

AIMS:Patients with unexplainable giant T-wave inversion in the precordial leads and apical wall thickness <15 mm have been reported. These patients cannot be diagnosed as apical hypertrophic cardiomyopathy (AHCM) according to the current criteria. The objective of this study was to evaluate the apical morphological features of this type of patients using cardiac magnetic resonance.METHODS AND RESULTS:Institutional ethics approval and written informed consent were obtained. A total of 60 subjects with unexplainable giant T-wave inversion and 76 healthy volunteers were prospectively enrolled in the study. The segmented left ventricular (LV) wall thickness was measured according to the American Heart Association 17-segmented model. The apical angle (apA) as well as the regional variations in LV wall thickness was analysed. Considerable variation in LV wall thickness in normals was observed with progressive thinning from the base to apex (male and female, P < 0.01). The apical thickness of subjects with giant T-wave inversion was 8.10 ± 1.67 mm in male, which is thicker than that of controls (4.14 ± 1.17 mm, P < 0.01). In female, the apical thickness was also significantly different from controls (5.85 ± 2.16 vs. 2.99 ± 0.65 mm, P < 0.01). Compared with normals, the apA decreased significantly in male (87.44 ± 13.86 vs.115.03 ± 9.90°, P < 0.01) and female (90.69 ± 8.84 vs. 110.07 ± 13.58°, P < 0.01) subjects, respectively.CONCLUSION:Although the absolute thickness of apical wall was below the current diagnostic criteria of AHCM, the apical morphological features of subjects with unexplainable giant T-wave inversion were significantly different from normals. Whether these subjects should be included into a preclinical scope of AHCM needs further investigations.

6.2
1区

European heart journal. Cardiovascular Imaging 2017

Bone Marrow Is a Reservoir for Cardiac Resident Stem Cells.

Resident cardiac stem cells (CSCs) represent a responsive stem cell reservoir within the adult myocardium and have a significant function in myocardial homeostasis and injury. However, the distribution, origin, homing and possible therapeutic benefits of CSCs are still under discussion. Here we investigated whether bone marrow (BM) stem cells could contribute to repopulating the pool of CSCs in heart. The engraftment of BM cells in heart was detected at a low level after BM transplantation (BMT) and ischemia/reperfusion (I/R) could increase BM cells engraftment but not significant. We clarified that more than 50% CSCs are derived from BM and confirmed that BM-derived CSCs have similar characteristics with the host CSCs. Furthermore, we transplanted BM-derived CSCs into heart ischemia models and presented evidence for the first time that BM-derived CSCs can differentiate into cardiomyocytes in vivo. In conclusions, BM stem cells could be a potential back-up source of CSCs for restoring heart function after injury or maintaining homeostasis of CSCs.

4.6
2区

Scientific reports 2016

Bone Marrow Mesenchymal Stem Cells (BM-MSCs) Improve Heart Function in Swine Myocardial Infarction Model through Paracrine Effects.

Stem cells are promising for the treatment of myocardial infarction (MI) and large animal models should be used to better understand the full spectrum of stem cell actions and preclinical evidences. In this study, bone marrow mesenchymal stem cells (BM-MSCs) were transplanted into swine heart ischemia model. To detect glucose metabolism in global left ventricular myocardium and regional myocardium, combined with assessment of cardiac function, positron emission tomography-computer tomography (PET-CT) and magnetic resonance imaging (MRI) were performed. To study the changes of glucose transporters and glucose metabolism-related enzymes and the signal transduction pathway, RT-PCR, Western-blot, and immunohistochemistry were carried out. Myocardium metabolic evaluation by PET-CT showed that mean signal intensity (MSI) increased in these segments at week 4 compared with that at week 1 after BM-MSCs transplantation. Moreover, MRI demonstrated significant function enhancement in BM-MSCs group. The gene expressions of glucose transporters (GLUT1, GLUT4), glucose metabolism-related enzymes phosphofructokinase (PFK), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) and 70-kDa ribosomal protein S6 kinase (p70s6k) in BM-MSCs injected areas were up-regulated at week 4 after BM-MSCs transplantation and this was confirmed by Western-blot and immunohistochemistry. In conclusions, BM-MSCs transplantation could improve cardiac function in swine MI model by activation of mTOR signal transduction pathway.

4.6
2区

Scientific reports 2016