刘超

阜外华中心血管病医院 成人心血管外科重症监护室

Analysis of long noncoding RNAs expression profiles in the human cardiac fibroblasts with cardiac fibrosis.

Cardiac fibrosis is a common pathological feature of cardiac remodelling process with disordered expression of multiple genes and eventually lead to heart failure. Emerging evidence suggests that long noncoding RNAs (lncRNAs) have emerged as critical regulators of various biological processes. However, the exact mechanisms of lncRNAs as mediators in cardiac fibrosis have not been fully elucidated. This study aimed to profile the lncRNA expression pattern in human cardiac fibroblasts (HCFs) with cardiac fibrosis. We treated HCFs with transforming growth factor-β (TGF-β) to induce their activation. Then, strand-specific RNA-seq was performed to profile and classify lncRNAs; and perform functional analysis in HCFs. We study the transformation of HCFs with molecular and cell biology methods. Among all identified lncRNA candidates, 176 and 526 lncRNAs were upregulated and downregulated respectively in TGF-β-stimulated HCFs compared with controls. Functional analyses revealed that the target genes of differentially expressed lncRNAs were mainly related to focal adhesion, metabolic pathways, Hippo signaling pathway, PI3K-Akt signaling pathway, regulation of actin cytoskeleton, and hypertrophic cardiomyopathy. As a representative, novel lncRNAs NONHSAG005537 and NONHSAG017620 inhibited the proliferation, migration, invasion, and transformation of HCFs induced by TGF-β. Collectively, our study established the expression signature of lncRNAs in cardiac fibrosis and demonstrated the cardioprotective role of NONHSAG005537 and NONHSAG017620 in cardiac fibrosis, providing a promising target for anti-fibrotic therapy.

3.1
3区

Biochemical and biophysical research communications 2023

Periostin renders cardiomyocytes vulnerable to acute myocardial infarction via pro-apoptosis.

AIMS:As a severe cardiovascular disease, acute myocardial infarction (AMI) could trigger congestive heart failure. Periostin (Postn) has been elucidated to be dramatically up-regulated in myocardial infarction. Abundant expression of Postn was also observed in the infarct border of human and mouse hearts with AMI. This work is dedicated to explore the mechanism through which Postn exerts its functions on AMI.METHODS AND RESULTS:The expression of Postn in AMI mice and hypoxia-treated neonatal mouse cardiomyocytes (NMCMs) was quantified by qRT-PCR. The biological functions of Postn in AMI were explored by trypan blue, TUNEL, flow cytometry analysis, and JC-1 assays. Luciferase activity or MS2-RIP or RNA pull-down assay was performed to study the interaction between genes. Postn exhibited up-regulated expression in AMI mice and hypoxia-treated NMCMs. Functional assays indicated that cell apoptosis in NMCMs was promoted via the treatment of hypoxia. And Postn shortage could alleviate cell apoptosis in hypoxia-induced NMCMs. Postn was verified to bind to mmu-miR-203-3p and be down-regulated by miR-203-3p overexpression. Postn and miR-203-3p were spotted to coexist with small nucleolar RNA host gene 8 (Snhg8) in RNA-induced silencing complex. The affinity between Snhg8 and miR-203-3p was confirmed. Afterwards, Snhg8 was validated to promote cell apoptosis in hypoxia-induced NMCMs partially dependent on Postn. Furthermore, vascular endothelial growth factor A (Vegfa) was revealed to bind to miR-203-3p and be implicated in the Snhg8-mediated AML cell apoptosis and angiogenesis.CONCLUSIONS:miR-203-3p availability is antagonized by Snhg8 for Postn and Vegfa-induced AMI progression.

3.8
2区

ESC heart failure 2022

Silencing of Long Noncoding RNA MIAT Contributes to Relieving Sepsis-Induced Myocardial Depression via the NF-κB Axis.

INTRODUCTION:Sepsis represents a life-threatening disease caused by a series of infections, which may be complicated with severe myocardial depression (MD). Long noncoding RNAs (lncRNAs) are closely related to sepsis-induced myocardial depression (SIMD). This study aimed to seek out the mechanism of lncRNA myocardial infarction-associated transcript (MIAT) in the growth of SIMD.METHODS:Venous blood samples were collected from 62 patients with sepsis; the sepsis rat model was established with 15 mg/kg lipopolysaccharide (LPS), and the H9C2 cardiomyocyte injury model was established with 1 μg/mL LPS. In the rat and cardiomyocyte models, MIAT was inhibited. The expression of MIAT in normal tissues and SIMD tissues was detected. Then, the functional assays of MIAT were performed in rats and H9C2 cells for detection of cardiac function, hemodynamics, inflammation response, myocardial function, oxidative stress, tissue stainings, and cardiomyocyte viability and apoptosis. Western blot analysis was used to measure the levels of apoptosis-related proteins and the nuclear factor kappa B (NF-κB) axis-related proteins.RESULTS:MIAT was highly expressed in SIMD patients. Silencing MIAT alleviated inflammation and apoptosis and improved myocardial function in SIMD rats by downregulating the NF-κB axis. In LPS-induced H9C2 cardiomyocytes, silencing MIAT alleviated inflammation and oxidative stress and inhibited apoptosis by downregulating the NF-κB axis, thus mitigating cardiomyocyte injury.CONCLUSIONS:MIAT could assist the diagnosis of SIMD and might affect the progression of SIMD by regulating the NF-κB pathway.

2.2
3区

The Journal of surgical research 2022