郭晓艳

阜外华中心血管病医院 心血管内科

HOTTIP knockdown inhibits cell proliferation and migration via regulating miR-490-3p/HMGB1 axis and PI3K-AKT signaling pathway in ox-LDL-induced VSMCs.

AIMS:Atherosclerosis (AS) is a common cardiovascular disease with complicated pathogenesis. Long non-coding RNAs (lncRNAs) have been reported to be associated with AS progression. We aimed to explore the role and underlying mechanism of HOXA transcript at the distal tip (HOTTIP) in AS.MATERIALS AND METHODS:Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of HOTTIP, miR-490-3p and high mobility group B 1 (HMGB1) in AS patients' sera and oxidized low-density lipoprotein (ox-LDL) induced human aortic vascular smooth muscle cells (HA-VSMCs). Cell Counting Kit-8 (CCK-8) assay and transwell assay were conducted to evaluate the proliferation and migration of HA-VSMCs, respectively. Western blot assay was carried out to determine the levels of proliferating cell nuclear antigen (PCNA), matrix metalloprotein 2 (MMP2), MMP9 and HMGB1. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify the targeting association between HOTTIP and miR-490-3p, as well as miR-490-3p and HMGB1.KEY FINDINGS:HOTTIP and HMGB1 were upregulated and miR-490-3p was downregulated in the sera of AS patients and ox-LDL-stimulated HA-VSMCs. HOTTIP knockdown suppressed ox-LDL induced proliferation and migration in HA-VSMCs. MiR-490-3p was identified as a target of HOTTIP and HOTTIP overexpression abolished the inhibition on cell proliferation and migration mediated by miR-490-3p in ox-LDL-induced HA-VSMCs. Moreover, miR-490-3p inhibition promoted cell proliferation and migration by directly targeting HMGB1 in ox-LDL-induced HA-VSMCs. Besides, HOTTIP knockdown repressed the activation of PI3K-AKT signaling pathway.SIGNIFICANCE:HOTTIP knockdown suppressed cell proliferation and migration by regulating miR-490-3p/HMGB1 axis and PI3K-AKT pathway in ox-LDL-induced HA-VSMCs.

6.1
2区
第一作者

Life sciences 2020

LncRNA MALAT1 protects cardiomyocytes from isoproterenol-induced apoptosis through sponging miR-558 to enhance ULK1-mediated protective autophagy.

Investigating the molecular mechanisms of myocardial infarction (MI) and subsequent heart failure have gained considerable attention worldwide. Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been previously demonstrated to regulate the proliferation and metastasis of several tumors. However, little is known about the effects of MALAT1 in MI and in regulating the cell date after MI. In our study, first, it was shown that the expression levels of MALAT1 were increased in the MI samples compared with normal tissues using quantitative reverse-transcription polymerase chain reaction. Then, MALAT1 knockdown could significantly decrease the cell viability and increase the apoptotic rates in isoproterenol (ISO)-treated H9C2 cells. In addition, we screened the possible target and found that miR-558 is its direct target using dual luciferase reporter assay, indicating that MALAT1 functioned as decoys sponging miR-558. Transfection of miR-558 mimic decreased the cell viability and enhanced the apoptosis. Furthermore, we revealed that miR-558 could downregulate ULK1 expression and suppressed ISO-induced protective autophagy. Activation of MALAT1/miR-558/ULK1 pathway protected H9C2 cells from ISO-induced mitochondria-dependent apoptosis. Finally, we used MALAT1-knockout mice to further demonstrated that MALAT1 protected cardiomyocytes from apoptosis and partially improved the cardiac functions upon ISO treatment. In conclusion, we elucidated that lncRNA MALAT1 protected cardiomyocytes from ISO-induced apoptosis by sponging miR-558 thus promoting ULK1-dependent autophagy. Targeting lncRNA MALAT1 might become a potential strategy in protecting cardiomyocytes during MI.

5.6
2区
第一作者

Journal of cellular physiology 2019