崔永春

中国医学科学院阜外医院 动物实验中心

Protective role of arachidonic acid against diabetic myocardial ischemic injury: a translational study of pigs, rats, and humans.

AIM:Patients with diabetes mellitus have poor prognosis after myocardial ischemic injury. However, the mechanism is unclear and there are no related therapies. We aimed to identify regulators of diabetic myocardial ischemic injury.METHODS AND RESULTS:Mass spectrometry-based, non-targeted metabolomic approach was used to profile coronary sinus blood from diabetic and non-diabetic Bama-mini pigs at 0.5-h post coronary artery ligation. Six metabolites had a |log2 (Fold Change)|> 1.3. Among them, the most changed is arachidonic acid (AA), levels of which were 32 times lower in diabetic pigs than in non-diabetic pigs. The AA-derived products, PGI2 and 6-keto-PGF1α, were also significantly reduced. AA treatment of cultured cardiomyocytes protected against cell death by 30% at 48 h of high glucose and oxygen deprivation, which coincided with increased mitophagic activity (as indicated by increased LC3II/LC3I, decreased p62 and increased parkin & PINK1), improved mitochondrial renewal (upregulation of Drp1 and FIS1), reduced ROS generation and increased ATP production. These cardioprotective effects were abolished by PINK1(a crucial mitophagy protein) knockdown or the autophagy inhibitor 3-Methyladenine. The protective effect of AA was also inhibited by indomethacin and Cay10441, a prostacyclin receptor antagonist. Furthermore, diabetic Sprague Dawley rats were subjected to coronary ligation for 40 min and AA treatment (10 mg/day per animal gavaged) decreased myocardial infarct size, cell apoptosis index, inflammatory cytokines and improved heart function. Scanning electron microscopy showed more intact mitochondria in the border zone of infarcted myocardium in AA treated rats. Lastly, diabetic patients after myocardial infarction had lower plasma levels of AA and 6-keto-PGF1α and reduced cardiac ejection fraction, compared with non-diabetic patients after myocardial infarction. Plasma AA level was inversely correlated with fasting blood glucose.CONCLUSIONS:AA protects against diabetic ischemic myocardial damage by promoting mitochondrial autophagy and renewal, which is related to AA derived PGI2 signaling. AA may represent a new strategy to treat diabetic myocardial ischemic injury.

9.3
1区

Cardiovascular diabetology 2024

Isolation and Identification of Porcine Bone Marrow Mesenchymal Stem Cells and their Derived Extracellular Vesicles.

With the development of stem cell therapy in translational research and regenerative medicine, bone marrow mesenchymal stem cells (BM-MSCs), as a kind of pluripotent stem cells, are favored for their instant availability and proven safety. It has been reported that transplantation of BM-MSCs is of great benefit to repairing injured tissues in various diseases, which might be related to modulating the immune and inflammatory responses via paracrine mechanisms. Extracellular vesicles (EVs), featuring a double-layer lipid membrane structure, are considered to be the main mediators of the paracrine effects of stem cells. Recognized for their crucial roles in cell communication and epigenetic regulation, EVs have already been applied in vivo for immunotherapy. However, similar to its maternal cells, most of the studies on the efficacy of transplantation of EVs still remain at the level of small animals, which is not enough to provide essential evidence for clinical translation. Here, we use density-gradient centrifugation to isolate bone marrow cells (BMC) from porcine bone marrow at first, and get porcine BM-MSCs (pBM-MSCs) by cell culture subsequently, identified by the results of observation under the microscope, induced differentiation assay, and flow cytometry. Furthermore, we isolate EVs derived from pBM-MSCs in cell supernatant by ultracentrifugation, proved by the techniques of transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting successfully. Overall, pBM-MSCs and their derived EVs can be isolated and identified effectively by the following protocols, which might be widely used in pre-clinical studies on the transplantation efficacy of BM-MSCs and their derived EVs.

1.2
4区

Journal of visualized experiments : JoVE 2022

The Integrated Analysis Identifies Three Critical Genes as Novel Diagnostic Biomarkers Involved in Immune Infiltration in Atherosclerosis.

Atherosclerosis (AS), a chronic inflammatory disease of the blood vessels, is the primary cause of cardiovascular disease, the leading cause of death worldwide. This study aimed to identify possible diagnostic markers for AS and determine their correlation with the infiltration of immune cells in AS. In total, 10 serum samples from AS patients and 10 samples from healthy subjects were collected. The original gene expression profiles of GSE43292 and GSE57691 were downloaded from the Gene Expression Omnibus database. Least absolute shrinkage and selection operator regression model and support vector machine recursive feature elimination analyses were carried out to identify candidate markers. The diagnostic values of the identified biomarkers were determined using receiver operating characteristic assays. The compositional patterns of the 22 types of immune cell fraction in AS were estimated using CIBERSORT. RT-PCR was performed to further determine the expression of the critical genes. This study identified 17 differentially expressed genes (DEGs) in AS samples. The identified DEGs were mainly involved in non-small cell lung carcinoma, pulmonary fibrosis, polycystic ovary syndrome, glucose intolerance, and T-cell leukemia. FHL5, IBSP, and SCRG1 have been identified as the diagnostic genes in AS. The expression of SCRG1 and FHL5 was distinctly downregulated in AS samples, and the expression of IBSP was distinctly upregulated in AS samples, which was further confirmed using our cohort by RT-PCR. Moreover, immune assays revealed that FHL5, IBSP, and SCRG1 were associated with several immune cells, such as CD8 T cells, naïve B cells, macrophage M0, activated memory CD4 T cells, and activated NK cells. Overall, future investigations into the occurrence and molecular mechanisms of AS may benefit from using the genes FHL5, IBSP, and SCRG1 as diagnostic markers for the condition.

7.3
2区

Frontiers in immunology 2022

Interventional Microbubble Enhanced Sonothrombolysis on Left Ventricular Assist Devices.

The left ventricular assist device (LVAD) is often used in the treatment of heart failure. However, 4% to 9% implanted LVAD will have thrombosis problem in one year, which is fatal to the patient's life. In this work, an interventional sonothrombolysis (IST) method is developed to realize the thrombolysis on LVAD. A pair of ultrasound transducer rings is installed on the shell of LVAD, and drug-loaded microbubbles are injected into the LVAD through the interventional method. The microbubbles are adhere on the thrombus with the coated thrombus-targeted drugs, and the thrombolytic drugs carried by the bubbles are brought into the thrombus by the cavitation of bubbles under the ultrasound. In a proof-of-concept experiment in a live sheep model, the thrombus on LVAD is dissolved in 30 min, without damages on LVADs and organs. This IST exhibits to be more efficient and safer compared with other thrombolysis methods on LVAD.

15.1
1区

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2022

Structural, functional and histological features of a novel ischemic heart failure model.

There is still no satisfactory large-animal model of ischemic heart failure (IHF) with ideal survival rate and model time. The aim of this study is to explore a novel chronic IHF model in swine. 23 healthy Ba-Ma miniature pigs were included. Pigs in the experimental group underwent multiple strategic ligations on side branches of the left anterior descending (LAD) and circumflex coronary arteries. One week later, sequential intervention occlusion of the distal end of the LAD trunk was performed. In the experimental groups, LV end-diastolic (LVEDV) and end-systolic volume (LVESV) gradually increased starting at 4 weeks post operation. At 12 WPO, LVEDV increased from 45.0 ± 2.9 ml at baseline to 110.0 ± 9.8 ml and LVESV increased from 17.0 ± 1.4 ml at baseline to 42.0 ± 3.6 ml. Meanwhile, left ventricular ejection fraction significantly decreased from 73.8 ± 4.2 % at baseline to 31.0 ± 2.5%. According to histomorphometric assessment, viable cells were observed in infarction lesions, indicating the model has replicated the structural and functional features of chronic IHF.

3.1
4区
第一作者

Frontiers in bioscience (Landmark edition) 2019

Construction and application of service quality evaluation system in the preclinical research on cardiovascular implant devices.

BACKGROUND:Services for the preclinical development and evaluation of cardiovascular implant devices (CVIDs) is a new industry. However, there is still no indicator system for quality evaluation. Our aim is to construct a service for quality evaluation system for the preclinical research and development of CVIDs based on Fuzzy Analytical Hierarchy Process (FAHP).METHODS:First, we reviewed the related literature to identify and select possible factors. Second, we developed an analytic hierarchy process framework. Third, we developed a questionnaire based on pairwise comparisons and invited 10 experienced specialists to rate these factors. We then used FAHP to compute the weights of these factors and prioritize them. Finally, to demonstrate the effectiveness of the proposed indicator system, a case study was performed as a practical example.RESULTS:Four main indicators (professionalism, functionality, stability and security) and 15 subindicators were selected to form the service evaluation system based on literature review and expert's proposals. According to the weight calculation data, the order of primary indicators by importance, is professionalism (0.6457), security (0.1193), functionality (0.0958) and stability (0.0596) in sequence. Top five secondary indices are personnel's technical ability, facility and equipment attractiveness, data auditability, confidentiality capability and professional service procedures. In the case study, FW's final actual effectiveness value was 0.9076, which is the same as the actual situation.CONCLUSION:The indicator system established in this study is comprehensive, reasonable, reliable and with strong practicality. It is worth popularizing and applying. The implementation of this evaluation system can provide measurable evidence for service demander and a way to improve service quality for suppliers.

3.5
3区
第一作者

BMC medical informatics and decision making 2019

Mdivi-1 alleviates blood-brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation.

Dynamin-related protein 1 (Drp1) is a key regulator of mitochondrial fission. Our previous studies proved that the inhibition of Drp1 may help attenuate traumatic brain injury (TBI)-induced functional outcome and cell death through maintaining normal mitochondrial morphology and inhibiting activation of apoptosis. However, the molecular mechanisms of Drp1 after TBI remain poorly understood. In this study, we investigated the role of mitochondrial division inhibitor 1 (Mdivi-1), a small molecule inhibitor of Drp1, in underlying mechanisms of general autophagy and mitochondria autophagy (mitophagy) after experimental TBI. In vivo, we found that autophagosomes accumulated in cortical neurons at 24h after TBI, owing to the enhanced autophagy indicated by the accumulation of LC3 and the decrease of p62; but Mdivi-1 reversed the enhancement. Mdivi-1 also alleviated the number of LC3 puncta and TUNEL-positive structures in cells, indicating that autophagy maybe involved in Mdivi-1's anti-apoptosis effects. Then, the expression level of mitochondrial dynamics related and mitophagy related proteins was assessed using the isolated mitochondria. The results showed that TBI-induced mitochondrial fission (represented by Drp1), mtDNA concentration down-regulation and PTEN induced putative kinase 1 (PINK1)-Parkin mediated mitophagy activation were all inhibited by Mdivi-1. In addition, TBI-induced blood-brain barrier (BBB) disruption and matrix metalloproteinases (MMP)-9 expression up-regulation were inhibited following Mdivi-1 treatment. In vitro, Mdivi-1 significantly alleviated the scratch injury-induced cell death, loss of mitochondrial membrane potential, reactive oxygen species (ROS) production and ATP reduction in primary cortical neurons (PCNs). Additionally, the lysosome inhibitor chloroquine (CQ) abrogated the Mdivi-1-induced decrease in autophagosomes accumulation and cell death at 24h both in the basal state and under the conditions of scratch cell injury. Together, these data demonstrate that Mdivi-1 mitigates TBI-induced BBB disruption and cell death at least in part by a mechanism involving inhibiting autophagy dysfunction and mitophagy activation.

4.0
3区

The international journal of biochemistry & cell biology 2018

The characteristics of a porcine mitral regurgitation model.

The porcine mitral regurgitation (MR) model is a common cardiovascular animal model. Standardized manufacturing processes can improve the uniformity and success rate of the model, and systematic research can evaluate its potential use. In this study, 17 pigs were divided into an experimental group (n=11) and a control group (n=6). We used a homemade retractor to cut the mitral chordae via the left atrial appendage to establish a model of MR; the control group underwent a sham surgery. The model animals were followed for 30 months after the surgery. Enlargement and fibrosis of the left atrium were significant in the experimental group compared with those in the control group, and left atrial systolic function decreased significantly. In addition, model animals showed preserved left ventricular systolic function. There were no differences in left atrial potential or left ventricular myocardial fibrosis between the two groups. Atrial fibrillation susceptibility in the experimental group was higher than that in the control group. Our method enables the simple and effective production of a MR model with severe reflux that can be used for pathophysiological studies of MR, as well as for the development of preclinical surgical instruments and their evaluation. This model could also be used to study atrial fibrillation and myocardial fibrosis but is not suitable for studies of heart failure.

2.4
4区

Experimental animals 2018

A comparative study of the characterization of miR-155 in knockout mice.

miR-155 is one of the most important miRNAs and plays a very important role in numerous biological processes. However, few studies have characterized this miRNA in mice under normal physiological conditions. We aimed to characterize miR-155 in vivo by using a comparative analysis. In our study, we compared miR-155 knockout (KO) mice with C57BL/6 wild type (WT) mice in order to characterize miR-155 in mice under normal physiological conditions using many evaluation methods, including a reproductive performance analysis, growth curve, ultrasonic estimation, haematological examination, and histopathological analysis. These analyses showed no significant differences between groups in the main evaluation indices. The growth and development were nearly normal for all mice and did not differ between the control and model groups. Using a comparative analysis and a summary of related studies published in recent years, we found that miR-155 was not essential for normal physiological processes in 8-week-old mice. miR-155 deficiency did not affect the development and growth of naturally ageing mice during the 42 days after birth. Thus, studying the complex biological functions of miR-155 requires the further use of KO mouse models.

3.7
3区

PloS one 2017

A Secure and High-Fidelity Live Animal Model for Off-Pump Coronary Bypass Surgery Training.

OBJECTIVE:Existing simulators for off-pump coronary artery (CA) bypass grafting training are unable to provide cardiac surgery residents all necessary skills they need entering the operation room. In this study, we introduced a secure and high-fidelity live animal model to supplement the in vitro simulators for off-pump CA bypass grafting training.DESIGN:The left internal thoracic artery (ITA) of 3 Chinese miniature pigs was grafted to the left anterior descending CA using an end-to-side anastomosis. The free segment of the ITA was fixed on the ventricle surface, making it a simulative CA beating in synchrony with the heart. A total of 6 to 8 training anastomoses were made on each ITA.SETTING:Animal Experiment Center in Fuwai Hospital.PARTICIPANTS:In total, 19 resident surgeons with at least 3 years of cardiac surgery work experience were trained using the new model. Their performances were recorded and reviewed.RESULTS:Simulative coronary arteries were successfully constructed in all 3 animals with no adverse event observed. A total of 19 anastomoses were then completed, 1 pig of 7 anastomoses and the other 2 animals of 6 anastomoses. Time consumption for the anastomosis was 782 ± 107 seconds. Anastomotic leakage was observed in 10/19 procedures. The most frequency site (7/10) was at the toe of the anastomosis. Further, the most common cause was uneven spacing or small margin of the stitches or both. Emergencies occurred during the training process included hypotension (7 procedures), tachyarrhythmia (4 procedures), and low blood oxygen saturation (1 procedure).CONCLUSIONS:This study demonstrated the safety and feasibility of our new live pig model in training resident surgeons. The simulative arteries can be easily accomplished and were long enough to place at least 6 anastomoses. Both on lumen diameter and motion status, they were proven to be a good substitution of the CA.

2.9
3区

Journal of surgical education 2016