何霞

中国医学科学院阜外医院深圳医院 病理科

MicroRNA microarray analysis to detect biomarkers of aortic dissection from paraffin-embedded tissue samples.

OBJECTIVES:The aim of this study was to explore the differential expression profiles of microRNAs (miRNAs) in paraffin-embedded acute aortic dissection (AAD) tissues to find potential biomarkers for this disease.METHODS:A total of 92 paraffin-embedded tissue specimens were collected from 92 patients with AAD who underwent surgical replacement. Among these specimens, 54 had partial normal aortic segments (smooth intima surface, non-atherosclerotic lesions) in proximal crevasse of aorta. Samples of these segments were taken 1 cm away from aortic lesions as the control group, after eliminating the tunica adventitia tissues. miRNA expression profiles were obtained by miRNA microarray analysis. Differentially expressed miRNAs were found by comparing the AAD group with the control group and were verified by fluorescence real-time quantitative polymerase chain reaction and by fluorescence in situ hybridization.RESULTS:A total of 71 differentially expressed miRNAs were detected. Twenty-two were up-regulated and 49 were down-regulated. Four up-regulated miRNAs (hsa-miR-636, hsa-miR-142-3p, hsa-miR-425-3p, hsa-miR-191-3p) were selected for validation by real-time fluorescence quantitative polymerase chain reaction and fluorescence in situ hybridization. In the fluorescence real-time quantitative polymerase chain reaction analysis, only hsa-miR-636 showed a statistically significant difference in the AAD versus control comparison (3.3-fold, P = 0.012). The fluorescence in situ hybridization validation showed that the expression level of hsa-miR-636 was significantly increased in the AAD versus control comparison (P < 0.001), with average optical densities of 61.29 ± 16.83 in the AAD group and 9.30 ± 3.98 in the control group.CONCLUSIONS:Hsa-miR-636 is involved in the pathogenesis of AAD and may be a potential biomarker for this disease.

4区

Interactive cardiovascular and thoracic surgery 2020

TCEAL2 as a Tumor Suppressor in Renal Cell Carcinoma is Associated with the Good Prognosis of Patients.

BACKGROUND:Renal cell carcinoma (RCC) is one of the most common tumors in urinary tract tumors. However, the mechanism that supports renal cell carcinoma is unclear. The function of transcription elongation factor A (SII)-like 2 (TCEAL2) and its association with human cancer have not been reported.MATERIALS AND METHODS:To explore the role of TCEAL2 in carcinogenesis of clear cell renal cell carcinoma (ccRCC), we performed bioinformatics analysis to determine the expression levels of TCEAL2 in ccRCC specimens and normal kidney tissue and then verified findings with our samples by qPCR, Western blot and immunohistochemistry staining. Furthermore, the lentiviral vectors were used to increase the expression of TCEAL2 in ccRCC cell lines. The immunofluorescence assay was taken to observe the subcellular location of TCEAL2 in ccRCC cells, and CCK-8 and flow cytometry were introduced for assessing cell proliferation and cell cycle of ccRCC cells, respectively.RESULTS:Compared with adjacent normal kidney tissue and human proximal tubular epithelial cells, the expression of TCEAL2 in ccRCC tissues and cell lines was down-regulated. Patients who had low expression of TCEAL2 had a statistically significant late tumor stage. Restore of TCEAL2 in ccRCC cells inhibited cell proliferation and induced cell cycle arrest in S phase of ccRCC cells.CONCLUSION:To our knowledge, this is the first report of TCEAL2 expression changes in ccRCC. We found that the decrease of TCEAL2 expression may be related to the occurrence of ccRCC. Further research is needed to clarify the molecular mechanism of TCEAL2 in progress of ccRCC.

3.3
4区

Cancer management and research 2020